Files
hakmem/core/hakmem_tiny_background.inc

257 lines
12 KiB
PHP
Raw Normal View History

// Background Refill Bin (per-class lock-free SLL) — fills in background so the
// front path only does a single CAS pop when both slots/bump are empty.
static int g_bg_bin_enable = 0; // ENV toggle removed (fixed OFF)
static int g_bg_bin_target = 128; // Fixed target (legacy default)
static _Atomic uintptr_t g_bg_bin_head[TINY_NUM_CLASSES];
static pthread_t g_bg_bin_thread;
static volatile int g_bg_bin_stop = 0;
static int g_bg_bin_started = 0;
// Inline helpers
#include "hakmem_tiny_bg_bin.inc.h"
// ============================================================================
// EXTRACTED TO hakmem_tiny_remote_target.c (Phase 2C-1)
// ============================================================================
// Targeted remote-drain queue moved to separate module
// Functions: remote_target_enqueue(), remote_target_pop()
// Variables: g_bg_remote_enable, g_remote_target_head, g_remote_target_len, g_bg_remote_batch
// ============================================================================
// EXTRACTED TO hakmem_tiny_bg_spill.c/.h (Phase 2C-2)
// ============================================================================
// Background spill/drain queue for SuperSlab freelist returns
// Functions: bg_spill_push_one(), bg_spill_push_chain(), bg_spill_drain_class(), bg_spill_init()
// Variables: g_bg_spill_enable, g_bg_spill_target, g_bg_spill_max_batch, g_bg_spill_head[], g_bg_spill_len[]
static void* tiny_bg_refill_main(void* arg) {
(void)arg;
const int sleep_us = 1000; // 1ms
while (!g_bg_bin_stop) {
if (!g_bg_bin_enable) { usleep(sleep_us); continue; }
for (int k = 0; k < TINY_NUM_CLASSES; k++) {
// まずは小クラスだけ対象(シンプルに)
if (!is_hot_class(k)) continue;
int have = bgbin_length_approx(k, g_bg_bin_target);
if (have >= g_bg_bin_target) continue;
int need = g_bg_bin_target - have;
// 生成チェーンを作るfree listやbitmapから、裏で重い処理OK
void* chain_head = NULL; void* chain_tail = NULL; int built = 0;
pthread_mutex_t* lock = &g_tiny_class_locks[k].m;
pthread_mutex_lock(lock);
TinySlab* slab = g_tiny_pool.free_slabs[k];
// Adopt first slab with free blocks; if none, allocate one
if (!slab) slab = allocate_new_slab(k);
while (need > 0 && slab) {
if (slab->free_count == 0) { slab = slab->next; continue; }
int idx = hak_tiny_find_free_block(slab);
if (idx < 0) { slab = slab->next; continue; }
hak_tiny_set_used(slab, idx);
slab->free_count--;
size_t bs = g_tiny_class_sizes[k];
void* p = (char*)slab->base + (idx * bs);
// prepend to local chain
Phase E3-FINAL: Fix Box API offset bugs - ALL classes now use correct offsets ## Root Cause Analysis (GPT5) **Physical Layout Constraints**: - Class 0: 8B = [1B header][7B payload] → offset 1 = 9B needed = ❌ IMPOSSIBLE - Class 1-6: >=16B = [1B header][15B+ payload] → offset 1 = ✅ POSSIBLE - Class 7: 1KB → offset 0 (compatibility) **Correct Specification**: - HAKMEM_TINY_HEADER_CLASSIDX != 0: - Class 0, 7: next at offset 0 (overwrites header when on freelist) - Class 1-6: next at offset 1 (after header) - HAKMEM_TINY_HEADER_CLASSIDX == 0: - All classes: next at offset 0 **Previous Bug**: - Attempted "ALL classes offset 1" unification - Class 0 with offset 1 caused immediate SEGV (9B > 8B block size) - Mixed 2-arg/3-arg API caused confusion ## Fixes Applied ### 1. Restored 3-Argument Box API (core/box/tiny_next_ptr_box.h) ```c // Correct signatures void tiny_next_write(int class_idx, void* base, void* next_value) void* tiny_next_read(int class_idx, const void* base) // Correct offset calculation size_t offset = (class_idx == 0 || class_idx == 7) ? 0 : 1; ``` ### 2. Updated 123+ Call Sites Across 34 Files - hakmem_tiny_hot_pop_v4.inc.h (4 locations) - hakmem_tiny_fastcache.inc.h (3 locations) - hakmem_tiny_tls_list.h (12 locations) - superslab_inline.h (5 locations) - tiny_fastcache.h (3 locations) - ptr_trace.h (macro definitions) - tls_sll_box.h (2 locations) - + 27 additional files Pattern: `tiny_next_read(base)` → `tiny_next_read(class_idx, base)` Pattern: `tiny_next_write(base, next)` → `tiny_next_write(class_idx, base, next)` ### 3. Added Sentinel Detection Guards - tiny_fast_push(): Block nodes with sentinel in ptr or ptr->next - tls_list_push(): Block nodes with sentinel in ptr or ptr->next - Defense-in-depth against remote free sentinel leakage ## Verification (GPT5 Report) **Test Command**: `./out/release/bench_random_mixed_hakmem --iterations=70000` **Results**: - ✅ Main loop completed successfully - ✅ Drain phase completed successfully - ✅ NO SEGV (previous crash at iteration 66151 is FIXED) - ℹ️ Final log: "tiny_alloc(1024) failed" is normal fallback to Mid/ACE layers **Analysis**: - Class 0 immediate SEGV: ✅ RESOLVED (correct offset 0 now used) - 66K iteration crash: ✅ RESOLVED (offset consistency fixed) - Box API conflicts: ✅ RESOLVED (unified 3-arg API) ## Technical Details ### Offset Logic Justification ``` Class 0: 8B block → next pointer (8B) fits ONLY at offset 0 Class 1: 16B block → next pointer (8B) fits at offset 1 (after 1B header) Class 2: 32B block → next pointer (8B) fits at offset 1 ... Class 6: 512B block → next pointer (8B) fits at offset 1 Class 7: 1024B block → offset 0 for legacy compatibility ``` ### Files Modified (Summary) - Core API: `box/tiny_next_ptr_box.h` - Hot paths: `hakmem_tiny_hot_pop*.inc.h`, `tiny_fastcache.h` - TLS layers: `hakmem_tiny_tls_list.h`, `hakmem_tiny_tls_ops.h` - SuperSlab: `superslab_inline.h`, `tiny_superslab_*.inc.h` - Refill: `hakmem_tiny_refill.inc.h`, `tiny_refill_opt.h` - Free paths: `tiny_free_magazine.inc.h`, `tiny_superslab_free.inc.h` - Documentation: Multiple Phase E3 reports ## Remaining Work None for Box API offset bugs - all structural issues resolved. Future enhancements (non-critical): - Periodic `grep -R '*(void**)' core/` to detect direct pointer access violations - Enforce Box API usage via static analysis - Document offset rationale in architecture docs 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-13 06:50:20 +09:00
tiny_next_write(k, p, chain_head); // Box API: next pointer write
chain_head = p;
if (!chain_tail) chain_tail = p;
built++; need--;
}
pthread_mutex_unlock(lock);
if (built > 0) {
bgbin_push_chain(k, chain_head, chain_tail);
}
}
// Drain background spill queues (SuperSlab freelist return)
// EXTRACTED: Drain logic moved to hakmem_tiny_bg_spill.c (Phase 2C-2)
if (g_bg_spill_enable) {
for (int k = 0; k < TINY_NUM_CLASSES; k++) {
pthread_mutex_t* lock = &g_tiny_class_locks[k].m;
bg_spill_drain_class(k, lock);
}
}
// Drain remote frees: targeted by per-class queue (avoid scanning all slabs)
if (g_bg_remote_enable) {
for (int k = 0; k < TINY_NUM_CLASSES; k++) {
int processed = 0;
while (processed < g_bg_remote_batch) {
TinySlab* s = remote_target_pop(k);
if (!s) break;
pthread_mutex_t* lock = &g_tiny_class_locks[k].m;
pthread_mutex_lock(lock);
tiny_remote_drain_locked(s);
pthread_mutex_unlock(lock);
processed++;
// If more remain (due to concurrent pushes), the slab may be re-enqueued
// by producers when threshold is hit again.
}
}
}
usleep(sleep_us);
}
return NULL;
}
static inline void eventq_push(int class_idx, uint32_t size) {
eventq_push_ex(class_idx, size, HAK_TIER_FRONT, 0, 0, 0);
}
static void* intelligence_engine_main(void* arg) {
(void)arg;
const int sleep_us = 100000; // 100ms
int hist[TINY_NUM_CLASSES] = {0};
int cnt[TINY_NUM_CLASSES] = {0};
// Tiny の学習は既定でOFF実アプリは後段で学習
// HAKMEM_INT_ADAPT_REFILL=1 / HAKMEM_INT_ADAPT_CAPS=1 を明示設定した場合のみON
int adapt_refill = 0; // default OFF for Tiny
int adapt_caps = 0; // default OFF for Tiny (env can enable)
char* arf = getenv("HAKMEM_INT_ADAPT_REFILL");
if (arf) adapt_refill = (atoi(arf) != 0);
char* acp = getenv("HAKMEM_INT_ADAPT_CAPS");
if (acp) adapt_caps = (atoi(acp) != 0);
const int REFILL_MIN = 32, REFILL_MAX = 256;
const int REFILL_HOT_MIN = 96, REFILL_HOT_MAX = 320;
// Tiny diet (memory-tight) knobs
{
char* rb = getenv("HAKMEM_TINY_RSS_BUDGET_KB");
if (rb) { int v = atoi(rb); if (v > 0) g_tiny_rss_budget_kb = v; }
char* st = getenv("HAKMEM_TINY_DIET_STEP");
if (st) { int v = atoi(st); if (v > 0 && v < 256) g_tiny_diet_step = v; }
char* tt = getenv("HAKMEM_TINY_INT_TIGHT");
if (tt) g_tiny_int_tight = (atoi(tt) != 0);
for (int k = 0; k < TINY_NUM_CLASSES; k++) {
char var[64]; snprintf(var, sizeof(var), "HAKMEM_TINY_CAP_FLOOR_C%d", k);
char* vf = getenv(var);
if (vf) { int v = atoi(vf); if (v > 0 && v < TINY_TLS_MAG_CAP) g_tiny_cap_floor[k] = v; }
}
}
// Idle trim knob
int idle_trim_ms = 0;
int idle_flush = 0; // flush magazines on idle tick (optional)
{
char* it = getenv("HAKMEM_TINY_IDLE_TRIM_MS");
if (it) { int v = atoi(it); if (v > 0) idle_trim_ms = v; }
char* iff = getenv("HAKMEM_TINY_IDLE_FLUSH");
if (iff) idle_flush = (atoi(iff) != 0);
}
int idle_trim_ticks = (idle_trim_ms > 0) ? (idle_trim_ms * 1000 / sleep_us) : 0;
int idle_tick = 0;
while (!g_int_stop) {
// Drain events
uint32_t h = atomic_load_explicit(&g_ev_head, memory_order_relaxed);
uint32_t t = atomic_load_explicit(&g_ev_tail, memory_order_acquire);
while (h != t) {
AllocEvent ev = g_ev_ring[h & EVENTQ_MASK];
if (ev.class_idx < TINY_NUM_CLASSES) {
hist[ev.class_idx]++;
// TODO: use ev.tier_hit/flags/site_id for richer adaptations
}
h++;
}
atomic_store_explicit(&g_ev_head, h, memory_order_release);
// Snapshot counts for this window
for (int k = 0; k < TINY_NUM_CLASSES; k++) { cnt[k] = hist[k]; }
// Simple adaptive rule: if class seen a lot, increase fill target; else reduce
for (int k = 0; k < TINY_NUM_CLASSES; k++) {
int count = cnt[k];
hist[k] = 0; // reset for next window
int cur = atomic_load_explicit(&g_frontend_fill_target[k], memory_order_relaxed);
if (count > 1000) {
int nv = cur + 32; if (nv > 256) nv = 256; // cap
atomic_store_explicit(&g_frontend_fill_target[k], nv, memory_order_relaxed);
} else if (count < 200) {
int nv = cur - 16; if (nv < 0) nv = 0;
atomic_store_explicit(&g_frontend_fill_target[k], nv, memory_order_relaxed);
}
}
// Stage 1: adjust refill batch bounds by class grouping (hot tiny vs others)
if (adapt_refill) {
int hot_sum = 0, other_sum = 0;
for (int k = 0; k < TINY_NUM_CLASSES; k++) {
int cur = atomic_load_explicit(&g_frontend_fill_target[k], memory_order_relaxed);
if (k <= 3) hot_sum += cur; else other_sum += cur;
}
if (hot_sum > 512) {
int nv = g_tiny_refill_max_hot + 16; if (nv > REFILL_HOT_MAX) nv = REFILL_HOT_MAX; g_tiny_refill_max_hot = nv;
} else if (hot_sum < 64) {
int nv = g_tiny_refill_max_hot - 16; if (nv < REFILL_HOT_MIN) nv = REFILL_HOT_MIN; g_tiny_refill_max_hot = nv;
}
if (other_sum > 256) {
int nv = g_tiny_refill_max + 16; if (nv > REFILL_MAX) nv = REFILL_MAX; g_tiny_refill_max = nv;
} else if (other_sum < 32) {
int nv = g_tiny_refill_max - 16; if (nv < REFILL_MIN) nv = REFILL_MIN; g_tiny_refill_max = nv;
}
}
// Adapt per-class MAG/SLL caps (light-touch; protects hot classes)
if (adapt_caps) {
for (int k = 0; k < TINY_NUM_CLASSES; k++) {
int hot = (k <= 3);
// Heuristic thresholds per window
// Hot classes raise caps more aggressively
int up_th = hot ? 800 : 1000;
int dn_th = hot ? 120 : 200;
if (g_tiny_int_tight) { dn_th = hot ? 200 : 300; }
// MAG cap override: move toward [min..max] within guard rails
int mag = g_mag_cap_override[k];
int mag_min;
switch (k) {
case 0: case 1: case 2: mag_min = 128; break; // 8/16/32B
case 3: mag_min = 256; break; // 64B (allow larger later)
case 4: mag_min = 128; break; // 128B
default: mag_min = 64; break;
}
int mag_max = 512; // soft ceiling; global hard ceiling is TINY_TLS_MAG_CAP
if (k == 3) mag_max = 1024;
if (mag <= 0) mag = mag_min; // start from baseline
if (cnt[k] > up_th) { mag += 16; if (mag > mag_max) mag = mag_max; }
else if (cnt[k] < dn_th) { mag -= 16; if (mag < mag_min) mag = mag_min; }
g_mag_cap_override[k] = mag;
// SLL cap override (hot classes only); keep absolute cap modest
if (hot) {
int sll = g_sll_cap_override[k];
if (sll <= 0) sll = 256; // starting point for hot classes
int sll_min = 128;
if (g_tiny_int_tight && g_tiny_cap_floor[k] > 0) sll_min = g_tiny_cap_floor[k];
int sll_max = 1024;
if (cnt[k] > up_th) { sll += 32; if (sll > sll_max) sll = sll_max; }
else if (cnt[k] < dn_th) { sll -= 32; if (sll < sll_min) sll = sll_min; }
g_sll_cap_override[k] = sll;
}
}
}
// Enforce Tiny RSS budget (if enabled): when over budget, shrink per-class caps by step
if (g_tiny_rss_budget_kb > 0) {
int rss = get_rss_kb_self();
if (rss > g_tiny_rss_budget_kb) {
for (int k = 0; k < TINY_NUM_CLASSES; k++) {
int floor = g_tiny_cap_floor[k]; if (floor <= 0) floor = 64;
int mag = g_mag_cap_override[k]; if (mag <= 0) mag = tiny_effective_cap(k);
mag -= g_tiny_diet_step; if (mag < floor) mag = floor; g_mag_cap_override[k] = mag;
// Phase12: SLL cap 調整は g_sll_cap_override ではなくポリシー側が担当するため、ここでは変更しない。
}
}
}
// Optional periodic idle trim (try to keep overhead small)
if (idle_trim_ticks > 0) {
idle_tick++;
if (idle_tick >= idle_trim_ticks) {
idle_tick = 0;
// Optional bounded flush of magazines to enable SS empty detection
if (idle_flush) hak_tiny_magazine_flush_all();
// Bounded trim: uses per-class locks briefly; acceptable in background
hak_tiny_trim();
}
}
usleep(sleep_us);
}
return NULL;
}