Files
hakmem/core/hakmem_tiny_free.inc

453 lines
19 KiB
PHP
Raw Normal View History

#include <inttypes.h>
#include "tiny_remote.h"
#include "slab_handle.h"
#include "tiny_refill.h"
#include "tiny_tls_guard.h"
#include "box/free_publish_box.h"
#include "mid_tcache.h"
extern __thread void* g_tls_sll_head[TINY_NUM_CLASSES];
extern __thread uint32_t g_tls_sll_count[TINY_NUM_CLASSES];
#if !HAKMEM_BUILD_RELEASE
#include "hakmem_tiny_magazine.h"
#endif
extern int g_tiny_force_remote;
// ENV: HAKMEM_TINY_DRAIN_TO_SLL (0=off) — adopt/bind境界でfreelist→TLS SLLへN個スプライス
static inline int tiny_drain_to_sll_budget(void) {
static int v = -1;
if (__builtin_expect(v == -1, 0)) {
const char* s = getenv("HAKMEM_TINY_DRAIN_TO_SLL");
int parsed = (s && *s) ? atoi(s) : 0;
if (parsed < 0) parsed = 0; if (parsed > 256) parsed = 256;
v = parsed;
}
return v;
}
static inline void tiny_drain_freelist_to_sll_once(SuperSlab* ss, int slab_idx, int class_idx) {
int budget = tiny_drain_to_sll_budget();
if (__builtin_expect(budget <= 0, 1)) return;
if (!(ss && ss->magic == SUPERSLAB_MAGIC)) return;
if (slab_idx < 0) return;
TinySlabMeta* m = &ss->slabs[slab_idx];
int moved = 0;
while (m->freelist && moved < budget) {
void* p = m->freelist;
m->freelist = *(void**)p;
*(void**)p = g_tls_sll_head[class_idx];
g_tls_sll_head[class_idx] = p;
g_tls_sll_count[class_idx]++;
moved++;
}
}
static inline int tiny_remote_queue_contains_guard(SuperSlab* ss, int slab_idx, void* target) {
if (!ss || slab_idx < 0) return 0;
uintptr_t cur = atomic_load_explicit(&ss->remote_heads[slab_idx], memory_order_acquire);
int limit = 8192;
while (cur && limit-- > 0) {
if ((void*)cur == target) {
return 1;
}
uintptr_t next;
if (__builtin_expect(g_remote_side_enable, 0)) {
next = tiny_remote_side_get(ss, slab_idx, (void*)cur);
} else {
next = atomic_load_explicit((_Atomic uintptr_t*)cur, memory_order_relaxed);
}
cur = next;
}
if (limit <= 0) {
return 1; // fail-safe: treat unbounded traversal as duplicate
}
return 0;
}
// Phase 6.12.1: Free with pre-calculated slab (Option C - avoids duplicate lookup)
void hak_tiny_free_with_slab(void* ptr, TinySlab* slab) {
// Phase 7.6: slab == NULL means SuperSlab mode (Magazine integration)
if (!slab) {
// SuperSlab path: Get class_idx from SuperSlab
SuperSlab* ss = hak_super_lookup(ptr);
if (!ss || ss->magic != SUPERSLAB_MAGIC) return;
int class_idx = ss->size_class;
size_t ss_size = (size_t)1ULL << ss->lg_size;
uintptr_t ss_base = (uintptr_t)ss;
if (__builtin_expect(class_idx < 0 || class_idx >= TINY_NUM_CLASSES, 0)) {
tiny_debug_ring_record(TINY_RING_EVENT_SUPERSLAB_ADOPT_FAIL, (uint16_t)0xFFu, ss, (uintptr_t)ss->size_class);
return;
}
// Optional: cross-lookup TinySlab owner and detect class mismatch early
if (__builtin_expect(g_tiny_safe_free, 0)) {
TinySlab* ts = hak_tiny_owner_slab(ptr);
if (ts) {
int ts_cls = ts->class_idx;
if (ts_cls >= 0 && ts_cls < TINY_NUM_CLASSES && ts_cls != class_idx) {
uint32_t code = 0xAA00u | ((uint32_t)ts_cls & 0xFFu);
uintptr_t aux = tiny_remote_pack_diag(code, ss_base, ss_size, (uintptr_t)ptr);
tiny_debug_ring_record(TINY_RING_EVENT_REMOTE_INVALID, (uint16_t)class_idx, ptr, aux);
if (g_tiny_safe_free_strict) { raise(SIGUSR2); return; }
}
}
}
tiny_debug_ring_record(TINY_RING_EVENT_FREE_ENTER, (uint16_t)class_idx, ptr, 0);
// Detect cross-thread: cross-thread free MUST go via superslab path
int slab_idx = slab_index_for(ss, ptr);
int ss_cap = ss_slabs_capacity(ss);
if (__builtin_expect(slab_idx < 0 || slab_idx >= ss_cap, 0)) {
tiny_debug_ring_record(TINY_RING_EVENT_SUPERSLAB_ADOPT_FAIL, (uint16_t)0xFEu, ss, (uintptr_t)slab_idx);
return;
}
TinySlabMeta* meta = &ss->slabs[slab_idx];
if (__builtin_expect(g_tiny_safe_free, 0)) {
size_t blk = g_tiny_class_sizes[class_idx];
uint8_t* base = tiny_slab_base_for(ss, slab_idx);
uintptr_t delta = (uintptr_t)ptr - (uintptr_t)base;
int cap_ok = (meta->capacity > 0) ? 1 : 0;
int align_ok = (delta % blk) == 0;
int range_ok = cap_ok && (delta / blk) < meta->capacity;
if (!align_ok || !range_ok) {
uint32_t code = 0xA104u;
if (align_ok) code |= 0x2u;
if (range_ok) code |= 0x1u;
uintptr_t aux = tiny_remote_pack_diag(code, ss_base, ss_size, (uintptr_t)ptr);
tiny_debug_ring_record(TINY_RING_EVENT_REMOTE_INVALID, (uint16_t)class_idx, ptr, aux);
if (g_tiny_safe_free_strict) { raise(SIGUSR2); return; }
return;
}
}
uint32_t self_tid = tiny_self_u32();
if (__builtin_expect(meta->owner_tid != self_tid, 0)) {
// route directly to superslab (remote queue / freelist)
uintptr_t ptr_val = (uintptr_t)ptr;
uintptr_t ss_base = (uintptr_t)ss;
size_t ss_size = (size_t)1ULL << ss->lg_size;
if (__builtin_expect(ptr_val < ss_base || ptr_val >= ss_base + ss_size, 0)) {
tiny_debug_ring_record(TINY_RING_EVENT_SUPERSLAB_ADOPT_FAIL, (uint16_t)0xFDu, ss, ptr_val);
return;
}
tiny_debug_ring_record(TINY_RING_EVENT_FREE_REMOTE, (uint16_t)class_idx, ss, (uintptr_t)ptr);
hak_tiny_free_superslab(ptr, ss);
HAK_STAT_FREE(class_idx);
return;
}
// A/B: Force SS freelist path for same-thread frees (publish on first-free)
do {
static int g_free_to_ss2 = -1;
if (__builtin_expect(g_free_to_ss2 == -1, 0)) {
const char* e = getenv("HAKMEM_TINY_FREE_TO_SS");
g_free_to_ss2 = (e && *e && *e != '0') ? 1 : 0; // default OFF
}
if (g_free_to_ss2) {
hak_tiny_free_superslab(ptr, ss);
HAK_STAT_FREE(class_idx);
return;
}
} while (0);
if (__builtin_expect(g_debug_fast0, 0)) {
tiny_debug_ring_record(TINY_RING_EVENT_FRONT_BYPASS, (uint16_t)class_idx, ptr, (uintptr_t)slab_idx);
void* prev = meta->freelist;
*(void**)ptr = prev;
meta->freelist = ptr;
meta->used--;
ss_active_dec_one(ss);
if (prev == NULL) {
ss_partial_publish((int)ss->size_class, ss);
}
tiny_debug_ring_record(TINY_RING_EVENT_FREE_LOCAL, (uint16_t)class_idx, ptr, (uintptr_t)slab_idx);
HAK_STAT_FREE(class_idx);
return;
}
if (g_fast_enable && g_fast_cap[class_idx] != 0) {
if (tiny_fast_push(class_idx, ptr)) {
tiny_debug_ring_record(TINY_RING_EVENT_FREE_FAST, (uint16_t)class_idx, ptr, slab_idx);
HAK_STAT_FREE(class_idx);
return;
}
}
if (g_tls_list_enable) {
TinyTLSList* tls = &g_tls_lists[class_idx];
uint32_t seq = atomic_load_explicit(&g_tls_param_seq[class_idx], memory_order_relaxed);
if (__builtin_expect(seq != g_tls_param_seen[class_idx], 0)) {
tiny_tls_refresh_params(class_idx, tls);
}
// TinyHotMag front push8/16/32B, A/B
if (__builtin_expect(g_hotmag_enable && class_idx <= 2, 1)) {
if (hotmag_push(class_idx, ptr)) {
tiny_debug_ring_record(TINY_RING_EVENT_FREE_RETURN_MAG, (uint16_t)class_idx, ptr, 1);
HAK_STAT_FREE(class_idx);
return;
}
}
if (tls->count < tls->cap) {
tiny_tls_list_guard_push(class_idx, tls, ptr);
tls_list_push(tls, ptr);
tiny_debug_ring_record(TINY_RING_EVENT_FREE_LOCAL, (uint16_t)class_idx, ptr, 0);
HAK_STAT_FREE(class_idx);
return;
}
seq = atomic_load_explicit(&g_tls_param_seq[class_idx], memory_order_relaxed);
if (__builtin_expect(seq != g_tls_param_seen[class_idx], 0)) {
tiny_tls_refresh_params(class_idx, tls);
}
tiny_tls_list_guard_push(class_idx, tls, ptr);
tls_list_push(tls, ptr);
if (tls_list_should_spill(tls)) {
tls_list_spill_excess(class_idx, tls);
}
tiny_debug_ring_record(TINY_RING_EVENT_FREE_LOCAL, (uint16_t)class_idx, ptr, 2);
HAK_STAT_FREE(class_idx);
return;
}
#include "tiny_free_magazine.inc.h"
// ============================================================================
// Phase 6.23: SuperSlab Allocation Helpers
// ============================================================================
// Phase 6.24: Allocate from SuperSlab slab (lazy freelist + linear allocation)
#include "tiny_superslab_alloc.inc.h"
#include "tiny_superslab_free.inc.h"
void hak_tiny_free(void* ptr) {
if (!ptr || !g_tiny_initialized) return;
hak_tiny_stats_poll();
tiny_debug_ring_record(TINY_RING_EVENT_FREE_ENTER, 0, ptr, 0);
#ifdef HAKMEM_TINY_BENCH_SLL_ONLY
// Bench-only SLL-only free: push to TLS SLL for ≤64B when possible
{
int class_idx = -1;
if (g_use_superslab) {
// FIXED: Use hak_super_lookup() instead of hak_super_lookup() to avoid false positives
SuperSlab* ss = hak_super_lookup(ptr);
if (ss && ss->magic == SUPERSLAB_MAGIC) class_idx = ss->size_class;
}
if (class_idx < 0) {
TinySlab* slab = hak_tiny_owner_slab(ptr);
if (slab) class_idx = slab->class_idx;
}
if (class_idx >= 0 && class_idx <= 3) {
uint32_t sll_cap = sll_cap_for_class(class_idx, (uint32_t)TINY_TLS_MAG_CAP);
if ((int)g_tls_sll_count[class_idx] < (int)sll_cap) {
*(void**)ptr = g_tls_sll_head[class_idx];
g_tls_sll_head[class_idx] = ptr;
g_tls_sll_count[class_idx]++;
return;
}
}
}
#endif
if (g_tiny_ultra) {
int class_idx = -1;
if (g_use_superslab) {
// FIXED: Use hak_super_lookup() instead of hak_super_lookup() to avoid false positives
SuperSlab* ss = hak_super_lookup(ptr);
if (ss && ss->magic == SUPERSLAB_MAGIC) class_idx = ss->size_class;
}
if (class_idx < 0) {
TinySlab* slab = hak_tiny_owner_slab(ptr);
if (slab) class_idx = slab->class_idx;
}
if (class_idx >= 0) {
// Ultra free: push directly to TLS SLL without magazine init
int sll_cap = ultra_sll_cap_for_class(class_idx);
if ((int)g_tls_sll_count[class_idx] < sll_cap) {
*(void**)ptr = g_tls_sll_head[class_idx];
g_tls_sll_head[class_idx] = ptr;
g_tls_sll_count[class_idx]++;
return;
}
}
// Fallback to existing path if class resolution fails
}
SuperSlab* fast_ss = NULL;
TinySlab* fast_slab = NULL;
int fast_class_idx = -1;
if (g_use_superslab) {
fast_ss = hak_super_lookup(ptr);
if (fast_ss && fast_ss->magic == SUPERSLAB_MAGIC) {
fast_class_idx = fast_ss->size_class;
// BUGFIX: Validate size_class before using as array index (prevents OOB = 85% of FREE_TO_SS SEGV)
if (__builtin_expect(fast_class_idx < 0 || fast_class_idx >= TINY_NUM_CLASSES, 0)) {
tiny_debug_ring_record(TINY_RING_EVENT_REMOTE_INVALID, 0xF0, ptr, (uintptr_t)fast_class_idx);
if (g_tiny_safe_free_strict) { raise(SIGUSR2); return; }
fast_ss = NULL;
fast_class_idx = -1;
}
} else {
fast_ss = NULL;
}
}
if (fast_class_idx < 0) {
fast_slab = hak_tiny_owner_slab(ptr);
if (fast_slab) fast_class_idx = fast_slab->class_idx;
}
// Safety: detect class mismatch (SS vs TinySlab) early
if (__builtin_expect(g_tiny_safe_free && fast_class_idx >= 0, 0)) {
int ss_cls = -1, ts_cls = -1;
SuperSlab* chk_ss = fast_ss ? fast_ss : (g_use_superslab ? hak_super_lookup(ptr) : NULL);
if (chk_ss && chk_ss->magic == SUPERSLAB_MAGIC) ss_cls = chk_ss->size_class;
TinySlab* chk_slab = fast_slab ? fast_slab : hak_tiny_owner_slab(ptr);
if (chk_slab) ts_cls = chk_slab->class_idx;
if (ss_cls >= 0 && ts_cls >= 0 && ss_cls != ts_cls) {
uintptr_t packed = ((uintptr_t)(uint16_t)ss_cls << 16) | (uint16_t)ts_cls;
tiny_debug_ring_record(TINY_RING_EVENT_REMOTE_INVALID, (uint16_t)fast_class_idx, ptr, packed);
if (g_tiny_safe_free_strict) { raise(SIGUSR2); return; }
}
}
if (fast_class_idx >= 0) {
tiny_debug_ring_record(TINY_RING_EVENT_FREE_ENTER, (uint16_t)fast_class_idx, ptr, 1);
}
if (fast_class_idx >= 0 && g_fast_enable && g_fast_cap[fast_class_idx] != 0) {
if (tiny_fast_push(fast_class_idx, ptr)) {
tiny_debug_ring_record(TINY_RING_EVENT_FREE_FAST, (uint16_t)fast_class_idx, ptr, 0);
HAK_STAT_FREE(fast_class_idx);
return;
}
}
// SuperSlab detection: prefer fast mask-based check when available
SuperSlab* ss = fast_ss;
if (!ss && g_use_superslab) {
ss = hak_super_lookup(ptr);
if (!(ss && ss->magic == SUPERSLAB_MAGIC)) {
ss = NULL;
}
}
if (ss && ss->magic == SUPERSLAB_MAGIC) {
// BUGFIX: Validate size_class before using as array index (prevents OOB)
if (__builtin_expect(ss->size_class < 0 || ss->size_class >= TINY_NUM_CLASSES, 0)) {
tiny_debug_ring_record(TINY_RING_EVENT_REMOTE_INVALID, 0xF2, ptr, (uintptr_t)ss->size_class);
if (g_tiny_safe_free_strict) { raise(SIGUSR2); return; }
return;
}
// Direct SuperSlab free (avoid second lookup TOCTOU)
hak_tiny_free_superslab(ptr, ss);
HAK_STAT_FREE(ss->size_class);
return;
}
// Fallback to TinySlab only when SuperSlab is not in use
TinySlab* slab = fast_slab;
if (!slab) slab = hak_tiny_owner_slab(ptr);
if (!slab) return; // Not managed by Tiny Pool
if (__builtin_expect(g_use_superslab, 0)) {
// In SS mode, a pointer that resolves only to TinySlab is suspicious → treat as invalid free
tiny_debug_ring_record(TINY_RING_EVENT_REMOTE_INVALID, 0xEE, ptr, 0xF1u);
if (g_tiny_safe_free_strict) { raise(SIGUSR2); return; }
return;
}
hak_tiny_free_with_slab(ptr, slab);
}
// ============================================================================
// EXTRACTED TO hakmem_tiny_query.c (Phase 2B-1)
// ============================================================================
// EXTRACTED: int hak_tiny_is_managed(void* ptr) {
// EXTRACTED: if (!ptr || !g_tiny_initialized) return 0;
// EXTRACTED: // Phase 6.12.1: O(1) slab lookup via registry/list
// EXTRACTED: return hak_tiny_owner_slab(ptr) != NULL || hak_super_lookup(ptr) != NULL;
// EXTRACTED: }
// Phase 7.6: Check if pointer is managed by Tiny Pool (TinySlab OR SuperSlab)
// EXTRACTED: int hak_tiny_is_managed_superslab(void* ptr) {
// EXTRACTED: if (!ptr || !g_tiny_initialized) return 0;
// EXTRACTED:
// EXTRACTED: // Safety: Only check if g_use_superslab is enabled
// EXTRACTED: if (g_use_superslab) {
// EXTRACTED: SuperSlab* ss = hak_super_lookup(ptr);
// EXTRACTED: // Phase 8.2 optimization: Use alignment check instead of mincore()
// EXTRACTED: // SuperSlabs are always SUPERSLAB_SIZE-aligned (2MB)
// EXTRACTED: if (ss && ((uintptr_t)ss & (SUPERSLAB_SIZE - 1)) == 0) {
// EXTRACTED: if (ss->magic == SUPERSLAB_MAGIC) {
// EXTRACTED: return 1; // Valid SuperSlab pointer
// EXTRACTED: }
// EXTRACTED: }
// EXTRACTED: }
// EXTRACTED:
// EXTRACTED: // Fallback to TinySlab check
// EXTRACTED: return hak_tiny_owner_slab(ptr) != NULL;
// EXTRACTED: }
// Return the usable size for a Tiny-managed pointer (0 if unknown/not tiny).
// Prefer SuperSlab metadata when available; otherwise use TinySlab owner class.
// EXTRACTED: size_t hak_tiny_usable_size(void* ptr) {
// EXTRACTED: if (!ptr || !g_tiny_initialized) return 0;
// EXTRACTED:
// EXTRACTED: // Check SuperSlab first via registry (safe under direct link and LD)
// EXTRACTED: if (g_use_superslab) {
// EXTRACTED: SuperSlab* ss = hak_super_lookup(ptr);
// EXTRACTED: if (ss && ss->magic == SUPERSLAB_MAGIC) {
// EXTRACTED: int k = (int)ss->size_class;
// EXTRACTED: if (k >= 0 && k < TINY_NUM_CLASSES) {
// EXTRACTED: return g_tiny_class_sizes[k];
// EXTRACTED: }
// EXTRACTED: }
// EXTRACTED: }
// EXTRACTED:
// EXTRACTED: // Fallback: TinySlab owner lookup
// EXTRACTED: TinySlab* slab = hak_tiny_owner_slab(ptr);
// EXTRACTED: if (slab) {
// EXTRACTED: int k = slab->class_idx;
// EXTRACTED: if (k >= 0 && k < TINY_NUM_CLASSES) {
// EXTRACTED: return g_tiny_class_sizes[k];
// EXTRACTED: }
// EXTRACTED: }
// EXTRACTED: return 0;
// EXTRACTED: }
// ============================================================================
// Statistics and Debug Functions - Extracted to hakmem_tiny_stats.c
// ============================================================================
// (Phase 2B API headers moved to top of file)
// Optional shutdown hook to stop background components (e.g., Intelligence Engine)
void hak_tiny_shutdown(void) {
// Release TLS SuperSlab references (dec refcount) before stopping BG/INT
for (int k = 0; k < TINY_NUM_CLASSES; k++) {
TinyTLSSlab* tls = &g_tls_slabs[k];
if (tls->ss) {
superslab_ref_dec(tls->ss);
tls->ss = NULL;
tls->meta = NULL;
tls->slab_base = NULL;
}
}
if (g_bg_bin_started) {
g_bg_bin_stop = 1;
if (!pthread_equal(tiny_self_pt(), g_bg_bin_thread)) {
pthread_join(g_bg_bin_thread, NULL);
}
g_bg_bin_started = 0;
g_bg_bin_enable = 0;
}
tiny_obs_shutdown();
if (g_int_engine && g_int_started) {
g_int_stop = 1;
// Best-effort join; avoid deadlock if called from within the thread
if (!pthread_equal(tiny_self_pt(), g_int_thread)) {
pthread_join(g_int_thread, NULL);
}
g_int_started = 0;
g_int_engine = 0;
}
}
// Always-available: Trim empty slabs (release fully-free slabs)