Files
hakmem/core/hakmem_tiny_alloc.inc

286 lines
12 KiB
PHP
Raw Normal View History

// ============================================================================
// Step 3: Cold-path outline - Wrapper Context Handler
// ============================================================================
// Purpose: Handle allocations during wrapper calls (rare execution)
// Rationale: Avoid re-entrancy hazards with pthread locks during wrapper calls
// Step 3d: Force inline for readability without performance loss
__attribute__((always_inline))
static inline void* hak_tiny_alloc_wrapper(int class_idx) {
// Wrapper-context fast path: magazine-only (never take locks or refill)
tiny_small_mags_init_once();
if (__builtin_expect(class_idx > 3, 0)) tiny_mag_init_if_needed(class_idx);
TinyTLSMag* mag = &g_tls_mags[class_idx];
if (mag->top > 0) {
void* p = mag->items[--mag->top].ptr;
HAK_RET_ALLOC(class_idx, p);
}
// Try TLS active slabs (owner-only, lock-free)
TinySlab* tls = g_tls_active_slab_a[class_idx];
if (!(tls && tls->free_count > 0)) tls = g_tls_active_slab_b[class_idx];
if (tls && tls->free_count > 0) {
tiny_remote_drain_owner(tls);
if (tls->free_count > 0) {
int block_idx = hak_tiny_find_free_block(tls);
if (block_idx >= 0) {
hak_tiny_set_used(tls, block_idx);
tls->free_count--;
size_t bs = g_tiny_class_sizes[class_idx];
void* p = (char*)tls->base + (block_idx * bs);
HAK_RET_ALLOC(class_idx, p);
}
}
}
// Optional: attempt limited refill under trylock (no remote drain)
if (g_wrap_tiny_refill) {
pthread_mutex_t* lock = &g_tiny_class_locks[class_idx].m;
if (pthread_mutex_trylock(lock) == 0) {
TinySlab* slab = g_tiny_pool.free_slabs[class_idx];
if (slab && slab->free_count > 0) {
int room = mag->cap - mag->top;
if (room > 16) room = 16; // wrapper refill is small and quick
if (room > slab->free_count) room = slab->free_count;
if (room > 0) {
size_t bs = g_tiny_class_sizes[class_idx];
void* ret = NULL;
for (int i = 0; i < room; i++) {
int idx = hak_tiny_find_free_block(slab);
if (idx < 0) break;
hak_tiny_set_used(slab, idx);
slab->free_count--;
void* p = (char*)slab->base + (idx * bs);
if (i < room - 1) {
mag->items[mag->top].ptr = p;
mag->top++;
} else {
ret = p; // return one directly
}
}
if (slab->free_count == 0) {
move_to_full_list(class_idx, slab);
}
pthread_mutex_unlock(lock);
if (ret) { HAK_RET_ALLOC(class_idx, ret); }
} else {
pthread_mutex_unlock(lock);
}
} else {
pthread_mutex_unlock(lock);
}
}
}
return NULL; // empty → fallback to next allocator tier
}
void* hak_tiny_alloc(size_t size) {
#if !HAKMEM_BUILD_RELEASE
if (!g_tiny_initialized) hak_tiny_init();
#else
if (__builtin_expect(!g_tiny_initialized, 0)) {
hak_tiny_init();
}
#endif
// Default (safe): Avoid using Tiny during wrapper callsTLSガード or 関数)
// If HAKMEM_WRAP_TINY=1, allow Tiny even when called from wrapper.
#if !HAKMEM_BUILD_RELEASE
# if HAKMEM_WRAPPER_TLS_GUARD
if (!g_wrap_tiny_enabled && __builtin_expect(g_tls_in_wrapper != 0, 0)) {
static int log1 = 0;
if (log1 < 2) { fprintf(stderr, "[DEBUG] Tiny blocked: in_wrapper\n"); log1++; }
return NULL;
}
# else
extern int hak_in_wrapper(void);
if (!g_wrap_tiny_enabled && __builtin_expect(hak_in_wrapper() != 0, 0)) {
static int log2 = 0;
if (log2 < 2) { fprintf(stderr, "[DEBUG] Tiny blocked: hak_in_wrapper\n"); log2++; }
return NULL;
}
# endif
#endif
// ========================================================================
// Cooperative stats polling (SIGUSR1 trigger safe point)
hak_tiny_stats_poll();
// ========================================================================
// Phase 6-1.5: Ultra-Simple Fast Path (when enabled)
// ========================================================================
// Design: "Simple Front + Smart Back" - inspired by Mid-Large HAKX +171%
// - 3-4 instruction fast path (Phase 6-1 style)
// - Existing SuperSlab + ACE + Learning backend
// Two variants:
// Phase 6-1.5: -DHAKMEM_TINY_PHASE6_ULTRA_SIMPLE=1 (alignment guessing)
// Phase 6-1.6: -DHAKMEM_TINY_PHASE6_METADATA=1 (metadata header)
#ifdef HAKMEM_TINY_PHASE6_ULTRA_SIMPLE
return hak_tiny_alloc_ultra_simple(size);
#elif defined(HAKMEM_TINY_PHASE6_METADATA)
return hak_tiny_alloc_metadata(size);
#endif
// ========================================================================
// 1. Size → class index
int class_idx = hak_tiny_size_to_class(size);
if (class_idx < 0) {
static int log3 = 0;
if (log3 < 2) { fprintf(stderr, "[DEBUG] Tiny blocked: class_idx < 0 for size %zu\n", size); log3++; }
return NULL; // >1KB
}
tiny_debug_ring_record(TINY_RING_EVENT_ALLOC_ENTER, (uint16_t)class_idx, (void*)(uintptr_t)size, 0);
#if HAKMEM_TINY_MINIMAL_FRONT
// Minimal Front for hot tiny classes (bench-focused):
// SLL direct pop → minimal refill → pop, bypassing other layers.
if (__builtin_expect(class_idx <= 3, 1)) {
void* head = g_tls_sll_head[class_idx];
if (__builtin_expect(head != NULL, 1)) {
g_tls_sll_head[class_idx] = *(void**)head;
if (g_tls_sll_count[class_idx] > 0) g_tls_sll_count[class_idx]--;
HAK_RET_ALLOC(class_idx, head);
}
// Refill a small batch directly from TLS-cached SuperSlab
(void)sll_refill_small_from_ss(class_idx, 32);
head = g_tls_sll_head[class_idx];
if (__builtin_expect(head != NULL, 1)) {
g_tls_sll_head[class_idx] = *(void**)head;
if (g_tls_sll_count[class_idx] > 0) g_tls_sll_count[class_idx]--;
HAK_RET_ALLOC(class_idx, head);
}
// Fall through to slow path if still empty
}
#endif
// Ultra-Front: minimal per-class stack for hot tiny classes (opt-in)
// Try ultra_pop → (optional) ultra_refill_small → ultra_pop before other layers
if (__builtin_expect(g_ultra_simple && class_idx <= 3, 0)) {
void* up = ultra_pop(class_idx);
if (__builtin_expect(up == NULL, 0)) {
(void)ultra_refill_small(class_idx);
up = ultra_pop(class_idx);
}
if (__builtin_expect(up != NULL, 0)) {
tiny_debug_ring_record(TINY_RING_EVENT_ALLOC_SUCCESS, (uint16_t)class_idx, up, 0xF0);
HAK_RET_ALLOC(class_idx, up);
}
}
if (__builtin_expect(!g_debug_fast0, 1)) {
#ifdef HAKMEM_TINY_BENCH_FASTPATH
if (__builtin_expect(class_idx <= HAKMEM_TINY_BENCH_TINY_CLASSES, 1)) {
if (__builtin_expect(class_idx <= 3, 1)) {
unsigned char* done = &g_tls_bench_warm_done[class_idx];
if (__builtin_expect(*done == 0, 0)) {
int warm = (class_idx == 0) ? HAKMEM_TINY_BENCH_WARMUP8 :
(class_idx == 1) ? HAKMEM_TINY_BENCH_WARMUP16 :
(class_idx == 2) ? HAKMEM_TINY_BENCH_WARMUP32 :
HAKMEM_TINY_BENCH_WARMUP64;
if (warm > 0) (void)sll_refill_small_from_ss(class_idx, warm);
*done = 1;
}
}
#ifndef HAKMEM_TINY_BENCH_SLL_ONLY
tiny_small_mags_init_once();
if (class_idx > 3) tiny_mag_init_if_needed(class_idx);
#endif
void* head = g_tls_sll_head[class_idx];
if (__builtin_expect(head != NULL, 1)) {
tiny_debug_ring_record(TINY_RING_EVENT_ALLOC_SUCCESS, (uint16_t)class_idx, head, 0);
g_tls_sll_head[class_idx] = *(void**)head;
if (g_tls_sll_count[class_idx] > 0) g_tls_sll_count[class_idx]--;
HAK_RET_ALLOC(class_idx, head);
}
#ifndef HAKMEM_TINY_BENCH_SLL_ONLY
TinyTLSMag* mag = &g_tls_mags[class_idx];
int t = mag->top;
if (__builtin_expect(t > 0, 1)) {
void* p = mag->items[--t].ptr;
mag->top = t;
tiny_debug_ring_record(TINY_RING_EVENT_ALLOC_SUCCESS, (uint16_t)class_idx, p, 1);
HAK_RET_ALLOC(class_idx, p);
}
#endif
int bench_refill = (class_idx == 0) ? HAKMEM_TINY_BENCH_REFILL8 :
(class_idx == 1) ? HAKMEM_TINY_BENCH_REFILL16 :
(class_idx == 2) ? HAKMEM_TINY_BENCH_REFILL32 :
HAKMEM_TINY_BENCH_REFILL64;
if (__builtin_expect(sll_refill_small_from_ss(class_idx, bench_refill) > 0, 0)) {
head = g_tls_sll_head[class_idx];
if (head) {
tiny_debug_ring_record(TINY_RING_EVENT_ALLOC_SUCCESS, (uint16_t)class_idx, head, 2);
g_tls_sll_head[class_idx] = *(void**)head;
if (g_tls_sll_count[class_idx] > 0) g_tls_sll_count[class_idx]--;
HAK_RET_ALLOC(class_idx, head);
}
}
// fallthrough to slow path on miss
}
#endif
// TinyHotMag front: fast-tierが枯渇したとき、キャッシュを再補充してから利用する
if (__builtin_expect(g_hotmag_enable && class_idx <= 2 && g_fast_head[class_idx] == NULL, 0)) {
hotmag_init_if_needed(class_idx);
TinyHotMag* hm = &g_tls_hot_mag[class_idx];
void* hotmag_ptr = hotmag_pop(class_idx);
if (__builtin_expect(hotmag_ptr == NULL, 0)) {
if (hotmag_try_refill(class_idx, hm) > 0) {
hotmag_ptr = hotmag_pop(class_idx);
}
}
if (__builtin_expect(hotmag_ptr != NULL, 1)) {
tiny_debug_ring_record(TINY_RING_EVENT_ALLOC_SUCCESS, (uint16_t)class_idx, hotmag_ptr, 3);
HAK_RET_ALLOC(class_idx, hotmag_ptr);
}
}
if (g_hot_alloc_fn[class_idx] != NULL) {
void* fast_hot = NULL;
switch (class_idx) {
case 0:
fast_hot = tiny_hot_pop_class0();
break;
case 1:
fast_hot = tiny_hot_pop_class1();
break;
case 2:
fast_hot = tiny_hot_pop_class2();
break;
case 3:
fast_hot = tiny_hot_pop_class3();
break;
default:
fast_hot = NULL;
break;
}
if (__builtin_expect(fast_hot != NULL, 1)) {
#if HAKMEM_BUILD_DEBUG
g_tls_hit_count[class_idx]++;
#endif
tiny_debug_ring_record(TINY_RING_EVENT_ALLOC_SUCCESS, (uint16_t)class_idx, fast_hot, 4);
HAK_RET_ALLOC(class_idx, fast_hot);
}
}
void* fast = tiny_fast_pop(class_idx);
if (__builtin_expect(fast != NULL, 0)) {
#if HAKMEM_BUILD_DEBUG
g_tls_hit_count[class_idx]++;
#endif
tiny_debug_ring_record(TINY_RING_EVENT_ALLOC_SUCCESS, (uint16_t)class_idx, fast, 5);
HAK_RET_ALLOC(class_idx, fast);
}
} else {
tiny_debug_ring_record(TINY_RING_EVENT_FRONT_BYPASS, (uint16_t)class_idx, NULL, 0);
}
void* slow_ptr = hak_tiny_alloc_slow(size, class_idx);
if (slow_ptr) {
tiny_debug_ring_record(TINY_RING_EVENT_ALLOC_SUCCESS, (uint16_t)class_idx, slow_ptr, 6);
HAK_RET_ALLOC(class_idx, slow_ptr); // Increment stats for slow path success
}
tiny_alloc_dump_tls_state(class_idx, "fail", &g_tls_slabs[class_idx]);
tiny_debug_ring_record(TINY_RING_EVENT_ALLOC_NULL, (uint16_t)class_idx, NULL, 0);
return slow_ptr;
}