Files
hakmem/docs/analysis/PHASE52_TAIL_LATENCY_PROXY_RESULTS.md

176 lines
6.4 KiB
Markdown
Raw Normal View History

Phase 54-60: Memory-Lean mode, Balanced mode stabilization, M1 (50%) achievement ## Summary Completed Phase 54-60 optimization work: **Phase 54-56: Memory-Lean mode (LEAN+OFF prewarm suppression)** - Implemented ss_mem_lean_env_box.h with ENV gates - Balanced mode (LEAN+OFF) promoted as production default - Result: +1.2% throughput, better stability, zero syscall overhead - Added to bench_profile.h: MIXED_TINYV3_C7_BALANCED preset **Phase 57: 60-min soak finalization** - Balanced mode: 60-min soak, RSS drift 0%, CV 5.38% - Speed-first mode: 60-min soak, RSS drift 0%, CV 1.58% - Syscall budget: 1.25e-7/op (800× under target) - Status: PRODUCTION-READY **Phase 59: 50% recovery baseline rebase** - hakmem FAST (Balanced): 59.184M ops/s, CV 1.31% - mimalloc: 120.466M ops/s, CV 3.50% - Ratio: 49.13% (M1 ACHIEVED within statistical noise) - Superior stability: 2.68× better CV than mimalloc **Phase 60: Alloc pass-down SSOT (NO-GO)** - Implemented alloc_passdown_ssot_env_box.h - Modified malloc_tiny_fast.h for SSOT pattern - Result: -0.46% (NO-GO) - Key lesson: SSOT not applicable where early-exit already optimized ## Key Metrics - Performance: 49.13% of mimalloc (M1 effectively achieved) - Stability: CV 1.31% (superior to mimalloc 3.50%) - Syscall budget: 1.25e-7/op (excellent) - RSS: 33MB stable, 0% drift over 60 minutes ## Files Added/Modified New boxes: - core/box/ss_mem_lean_env_box.h - core/box/ss_release_policy_box.{h,c} - core/box/alloc_passdown_ssot_env_box.h Scripts: - scripts/soak_mixed_single_process.sh - scripts/analyze_epoch_tail_csv.py - scripts/soak_mixed_rss.sh - scripts/calculate_percentiles.py - scripts/analyze_soak.py Documentation: Phase 40-60 analysis documents ## Design Decisions 1. Profile separation (core/bench_profile.h): - MIXED_TINYV3_C7_SAFE: Speed-first (no LEAN) - MIXED_TINYV3_C7_BALANCED: Balanced mode (LEAN+OFF) 2. Box Theory compliance: - All ENV gates reversible (HAKMEM_SS_MEM_LEAN, HAKMEM_ALLOC_PASSDOWN_SSOT) - Single conversion points maintained - No physical deletions (compile-out only) 3. Lessons learned: - SSOT effective only where redundancy exists (Phase 60 showed limits) - Branch prediction extremely effective (~0 cycles for well-predicted branches) - Early-exit pattern valuable even when seemingly redundant 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
2025-12-17 06:24:01 +09:00
# Phase 52: Tail Latency Proxy Results
**Date**: 2025-12-16
**Phase**: 52 - Tail Latency Proxy Measurement
**Status**: COMPLETE (Measurement-only, no code changes)
## Executive Summary
We measured tail latency using epoch throughput distribution as a proxy across three allocators:
- **hakmem FAST** (current optimized build)
- **mimalloc** (industry baseline)
- **system malloc** (glibc)
Test configuration: 5-minute single-process soak, 1-second epochs, WS=400 (mixed workload)
### Key Findings
1. **mimalloc has best tail behavior**: Lowest p99/p999 latency proxy, tightest distribution
2. **system malloc has second-best tail**: Very consistent, low variance
3. **hakmem FAST has worst tail**: Higher p99/p999, more variability
4. **hakmem's gap is in tail consistency, not average performance**
## Important Note (Method Correction)
Tail の向きと計算には注意が必要:
- Throughput の “tail” は **低い throughput 側**p1/p0.1を見るp99 は “速い側”)。
- Latency proxy の percentiles は **per-epoch latency**`lat_ns = 1e9/throughput`)配列を作ってから計算する。
- `p99(latency) != 1e9 / p99(throughput)`(非線形 + 順序反転のため)
推奨: CSV`scripts/soak_mixed_single_process.sh` 出力)から `scripts/analyze_epoch_tail_csv.py` で再集計し、SSOT を更新する。
```bash
python3 scripts/analyze_epoch_tail_csv.py tail_epoch_hakmem_fast_5m.csv
```
## Detailed Results (v0)
### Throughput Distribution (ops/sec)
| Metric | hakmem FAST | mimalloc | system malloc |
|--------|-------------|----------|---------------|
| **p50** | 47,887,721 | 98,738,326 | 69,562,115 |
| **p90** | 58,629,195 | 99,580,629 | 69,931,575 |
| **p99** | 59,174,766 | 110,702,822 | 70,165,415 |
| **p999** | 59,567,912 | 111,190,037 | 70,308,452 |
| **Mean** | 50,174,657 | 99,084,977 | 69,447,599 |
| **Std Dev** | 4,461,290 | 2,455,894 | 522,021 |
| **Min** | 46,254,013 | 95,458,811 | 66,242,568 |
| **Max** | 59,608,715 | 111,202,228 | 70,326,858 |
### Latency Proxy (ns/op)
Calculated as `1 / throughput * 1e9` to convert throughput to per-operation latency.
| Metric | hakmem FAST | mimalloc | system malloc |
|--------|-------------|----------|---------------|
| **p50** | 20.88 ns | 10.13 ns | 14.38 ns |
| **p90** | 21.12 ns | 10.24 ns | 14.50 ns |
| **p99** | 21.33 ns | 10.43 ns | 14.80 ns |
| **p999** | 21.57 ns | 10.47 ns | 15.07 ns |
| **Mean** | 20.07 ns | 10.10 ns | 14.40 ns |
| **Std Dev** | 1.60 ns | 0.23 ns | 0.11 ns |
| **Min** | 16.78 ns | 8.99 ns | 14.22 ns |
| **Max** | 21.62 ns | 10.48 ns | 15.10 ns |
## Analysis
### Tail Behavior Comparison
**Standard Deviation as % of Mean (lower = more consistent):**
- hakmem FAST: 7.98% (highest variability)
- mimalloc: 2.28% (good consistency)
- system malloc: 0.77% (best consistency)
**p99/p50 Ratio (lower = better tail):**
- hakmem FAST: 1.024 (2.4% tail slowdown)
- mimalloc: 1.030 (3.0% tail slowdown)
- system malloc: 1.029 (2.9% tail slowdown)
**p999/p50 Ratio:**
- hakmem FAST: 1.033 (3.3% tail slowdown)
- mimalloc: 1.034 (3.4% tail slowdown)
- system malloc: 1.048 (4.8% tail slowdown)
### Interpretation
1. **hakmem's throughput variance is high**: 4.46M ops/sec std dev vs mimalloc's 2.46M and system's 0.52M
- This indicates periodic slowdowns or stalls
- Likely due to TLS cache misses, metadata lookup costs, or GC-like background work
2. **mimalloc has best absolute performance AND good tail behavior**:
- 2x faster than hakmem at median
- Lower latency at all percentiles
- Moderate variance (2.28% std dev)
3. **system malloc has rock-solid consistency**:
- Only 0.77% std dev (extremely stable)
- Very tight p99/p999 spread
- Middle performance tier (~1.5x faster than hakmem)
4. **hakmem's tail problem is relative to its mean**:
- Absolute p99 latency (21.33 ns) isn't terrible
- But variance is 2-3x higher than competitors
- Suggests optimization opportunities in cache warmth, metadata layout
## Implications for Optimization
### Root Causes to Investigate
1. **TLS cache thrashing**: High variance suggests periodic cache coldness
2. **Metadata lookup cost**: Possibly slower on cache misses
3. **Background work interference**: Adaptive sizing, stats collection?
4. **Free path delays**: Remote frees, mailbox processing
### Potential Solutions
1. **Prewarm more aggressively**: Reduce cold-start penalties
2. **Optimize metadata cache hit rate**: Better locality, prefetching
3. **Reduce background work frequency**: Less interruption to hot path
4. **Improve free-side batching**: Reduce per-operation variance
### Prioritization
Given that:
- hakmem is already 2x slower than mimalloc at median
- Tail behavior is worse but not catastrophically so
- Variance is the main issue, not worst-case absolute latency
**Recommendation**: Focus on **reducing variance** rather than chasing p999 specifically.
- Target: Get std dev down from 4.46M to <2M ops/sec (match mimalloc's 2.46M)
- This will naturally improve tail latency as a side effect
## Test Configuration
### Hardware
- CPU: (recorded in soak CSV metadata)
- Memory: Sufficient for WS=400 (20MB prefault)
- OS: Linux
### Benchmark Parameters
- **Workload**: bench_random_mixed (70% malloc, 30% free)
- **Working Set**: 400 (mixed size distribution)
- **Duration**: 300 seconds (5 minutes)
- **Epoch Length**: 1 second
- **Process Model**: Single process (no parallelism)
### Allocator Builds
- hakmem: MINIMAL build (FAST path enabled, aggressive inlining)
- mimalloc: Default build from vendor
- system malloc: glibc default (no LD_PRELOAD)
## Raw Data
CSV files available at:
- `/mnt/workdisk/public_share/hakmem/tail_epoch_hakmem_fast_5m.csv`
- `/mnt/workdisk/public_share/hakmem/tail_epoch_mimalloc_5m.csv`
- `/mnt/workdisk/public_share/hakmem/tail_epoch_system_5m.csv`
Analysis script: `scripts/calculate_percentiles.py`
## Next Steps
1. **Phase 53**: RSS Tax Triage - understand memory overhead
2. **Future optimization phases**: Target variance reduction
- Phase 54+: TLS cache optimization
- Phase 55+: Metadata locality improvements
- Phase 56+: Background work reduction
## Conclusion
**Phase 52 Status: COMPLETE**
We have established a tail latency baseline using epoch throughput as a proxy. Key takeaway: hakmem's tail behavior is acceptable but has room for improvement, primarily by reducing throughput variance (std dev). This measurement provides a clear target for future optimization work.
**No code changes made** - this was a measurement-only phase.