Files
hakmem/scripts/calculate_percentiles.py

117 lines
3.9 KiB
Python
Raw Normal View History

Phase 54-60: Memory-Lean mode, Balanced mode stabilization, M1 (50%) achievement ## Summary Completed Phase 54-60 optimization work: **Phase 54-56: Memory-Lean mode (LEAN+OFF prewarm suppression)** - Implemented ss_mem_lean_env_box.h with ENV gates - Balanced mode (LEAN+OFF) promoted as production default - Result: +1.2% throughput, better stability, zero syscall overhead - Added to bench_profile.h: MIXED_TINYV3_C7_BALANCED preset **Phase 57: 60-min soak finalization** - Balanced mode: 60-min soak, RSS drift 0%, CV 5.38% - Speed-first mode: 60-min soak, RSS drift 0%, CV 1.58% - Syscall budget: 1.25e-7/op (800× under target) - Status: PRODUCTION-READY **Phase 59: 50% recovery baseline rebase** - hakmem FAST (Balanced): 59.184M ops/s, CV 1.31% - mimalloc: 120.466M ops/s, CV 3.50% - Ratio: 49.13% (M1 ACHIEVED within statistical noise) - Superior stability: 2.68× better CV than mimalloc **Phase 60: Alloc pass-down SSOT (NO-GO)** - Implemented alloc_passdown_ssot_env_box.h - Modified malloc_tiny_fast.h for SSOT pattern - Result: -0.46% (NO-GO) - Key lesson: SSOT not applicable where early-exit already optimized ## Key Metrics - Performance: 49.13% of mimalloc (M1 effectively achieved) - Stability: CV 1.31% (superior to mimalloc 3.50%) - Syscall budget: 1.25e-7/op (excellent) - RSS: 33MB stable, 0% drift over 60 minutes ## Files Added/Modified New boxes: - core/box/ss_mem_lean_env_box.h - core/box/ss_release_policy_box.{h,c} - core/box/alloc_passdown_ssot_env_box.h Scripts: - scripts/soak_mixed_single_process.sh - scripts/analyze_epoch_tail_csv.py - scripts/soak_mixed_rss.sh - scripts/calculate_percentiles.py - scripts/analyze_soak.py Documentation: Phase 40-60 analysis documents ## Design Decisions 1. Profile separation (core/bench_profile.h): - MIXED_TINYV3_C7_SAFE: Speed-first (no LEAN) - MIXED_TINYV3_C7_BALANCED: Balanced mode (LEAN+OFF) 2. Box Theory compliance: - All ENV gates reversible (HAKMEM_SS_MEM_LEAN, HAKMEM_ALLOC_PASSDOWN_SSOT) - Single conversion points maintained - No physical deletions (compile-out only) 3. Lessons learned: - SSOT effective only where redundancy exists (Phase 60 showed limits) - Branch prediction extremely effective (~0 cycles for well-predicted branches) - Early-exit pattern valuable even when seemingly redundant 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
2025-12-17 06:24:01 +09:00
#!/usr/bin/env python3
"""
Calculate percentiles (p50/p90/p99/p999) from epoch soak CSV data.
"""
import sys
import csv
import statistics
def percentile(data, p):
"""Calculate percentile p (0-100) from sorted data."""
n = len(data)
if n == 0:
return 0
k = (n - 1) * p / 100.0
f = int(k)
c = int(k) + 1
if c >= n:
return data[-1]
d0 = data[f]
d1 = data[c]
return d0 + (d1 - d0) * (k - f)
def calculate_percentiles(csv_file):
"""Calculate percentiles from CSV file containing throughput data."""
throughputs = []
with open(csv_file, 'r') as f:
reader = csv.DictReader(f)
for row in reader:
throughput = float(row['throughput_ops_s'])
throughputs.append(throughput)
if not throughputs:
print(f"Error: No data found in {csv_file}", file=sys.stderr)
return None
throughputs_sorted = sorted(throughputs)
# Calculate percentiles
p50 = percentile(throughputs_sorted, 50)
p90 = percentile(throughputs_sorted, 90)
p99 = percentile(throughputs_sorted, 99)
p999 = percentile(throughputs_sorted, 99.9)
# Calculate latency proxy (1/throughput in nanoseconds)
# throughput is in ops/sec, so 1/throughput gives sec/op
# multiply by 1e9 to get ns/op
latencies = [1e9 / t for t in throughputs]
latencies_sorted = sorted(latencies)
lat_p50 = percentile(latencies_sorted, 50)
lat_p90 = percentile(latencies_sorted, 90)
lat_p99 = percentile(latencies_sorted, 99)
lat_p999 = percentile(latencies_sorted, 99.9)
return {
'throughput': {
'p50': p50,
'p90': p90,
'p99': p99,
'p999': p999,
'mean': statistics.mean(throughputs),
'min': min(throughputs),
'max': max(throughputs),
'std': statistics.stdev(throughputs) if len(throughputs) > 1 else 0,
},
'latency_ns': {
'p50': lat_p50,
'p90': lat_p90,
'p99': lat_p99,
'p999': lat_p999,
'mean': statistics.mean(latencies),
'min': min(latencies),
'max': max(latencies),
'std': statistics.stdev(latencies) if len(latencies) > 1 else 0,
}
}
def format_number(n, decimals=2):
"""Format number with commas and fixed decimals."""
return f"{n:,.{decimals}f}"
def main():
if len(sys.argv) != 2:
print("Usage: calculate_percentiles.py <csv_file>")
sys.exit(1)
csv_file = sys.argv[1]
results = calculate_percentiles(csv_file)
if results is None:
sys.exit(1)
print(f"Results for: {csv_file}")
print("\n=== Throughput (ops/sec) ===")
print(f" p50: {format_number(results['throughput']['p50'], 0)}")
print(f" p90: {format_number(results['throughput']['p90'], 0)}")
print(f" p99: {format_number(results['throughput']['p99'], 0)}")
print(f" p999: {format_number(results['throughput']['p999'], 0)}")
print(f" mean: {format_number(results['throughput']['mean'], 0)}")
print(f" std: {format_number(results['throughput']['std'], 0)}")
print(f" min: {format_number(results['throughput']['min'], 0)}")
print(f" max: {format_number(results['throughput']['max'], 0)}")
print("\n=== Latency Proxy (ns/op) ===")
print(f" p50: {format_number(results['latency_ns']['p50'], 2)}")
print(f" p90: {format_number(results['latency_ns']['p90'], 2)}")
print(f" p99: {format_number(results['latency_ns']['p99'], 2)}")
print(f" p999: {format_number(results['latency_ns']['p999'], 2)}")
print(f" mean: {format_number(results['latency_ns']['mean'], 2)}")
print(f" std: {format_number(results['latency_ns']['std'], 2)}")
print(f" min: {format_number(results['latency_ns']['min'], 2)}")
print(f" max: {format_number(results['latency_ns']['max'], 2)}")
if __name__ == '__main__':
main()