Files
hakmem/core/hakmem_internal.h

377 lines
13 KiB
C
Raw Normal View History

// hakmem_internal.h - Internal Implementation Helpers (static inline)
// Purpose: Separate implementation details from public API using zero-cost abstraction
//
// Design Philosophy:
// - All functions are `static inline` → Zero overhead (100% inlined with -O2)
// - Type-safe (unlike macros)
// - Debuggable (unlike macros)
// - Readable (unlike macros)
//
// This file should be #include'd by hakmem.c ONLY (not a public header)
#ifndef HAKMEM_INTERNAL_H
#define HAKMEM_INTERNAL_H
#include "hakmem.h"
#include "hakmem_config.h"
#include "hakmem_sys.h" // Phase 6.11.1: Syscall wrappers with timing
#include "hakmem_whale.h" // Phase 6.11.1: Whale fast-path cache
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <sys/mman.h> // For mincore, madvise
#include <unistd.h> // For sysconf
// Exposed runtime mode: set to 1 when loaded via LD_PRELOAD (libhakmem.so)
extern int g_ldpreload_mode;
// ============================================================================
// Phase 6.15 P0.1: Debug Logging Control
// ============================================================================
// Compile-time control: HAKMEM_DEBUG_VERBOSE (default OFF for performance)
// Runtime control: HAKMEM_QUIET environment variable (only for debug builds)
//
// Build modes:
// Release (default): make shared → No logs (HAKMEM_LOG compiled out)
// Debug: make debug → Logs enabled (unless HAKMEM_QUIET=1)
// Debug quiet: HAKMEM_QUIET=1 ... → Logs suppressed at runtime
#ifdef HAKMEM_DEBUG_VERBOSE
// Debug build: Check HAKMEM_QUIET at runtime
#define HAKMEM_LOG(fmt, ...) do { \
static int quiet_checked = 0; \
static int quiet_mode = 0; \
if (!quiet_checked) { \
char* env = getenv("HAKMEM_QUIET"); \
quiet_mode = (env && strcmp(env, "1") == 0); \
quiet_checked = 1; \
} \
if (!quiet_mode) { \
fprintf(stderr, "[hakmem] " fmt, ##__VA_ARGS__); \
} \
} while(0)
#else
// Release build: Compile out all logs (zero overhead)
#define HAKMEM_LOG(fmt, ...) ((void)0)
#endif
#ifdef __linux__
#include <sys/mman.h>
#include <unistd.h>
// MADV_FREE support (Linux kernel 4.5+)
#ifndef MADV_FREE
#define MADV_FREE 8
#endif
// Fallback for MADV_DONTNEED if not defined (Linux usually defines 4)
#ifndef MADV_DONTNEED
#define MADV_DONTNEED 4
#endif
// THP support
#ifndef MADV_HUGEPAGE
#define MADV_HUGEPAGE 14
#endif
#ifndef MADV_NOHUGEPAGE
#define MADV_NOHUGEPAGE 15
#endif
#endif
// ===========================================================================
// Internal Constants
// ===========================================================================
#define HAKMEM_MAGIC 0x48414B4D // "HAKM" in ASCII (uint32_t)
#define HEADER_SIZE sizeof(AllocHeader)
// THP thresholds (from config)
#define THP_THRESHOLD (2 * 1024 * 1024) // 2MB
// Thermal thresholds (from Phase 6.4 P1)
#define THERMAL_COLD_THRESHOLD (2 * 1024 * 1024) // 2MB
#define THERMAL_WARM_THRESHOLD (1 * 1024 * 1024) // 1MB
// ===========================================================================
// Internal Types
// ===========================================================================
typedef enum {
ALLOC_METHOD_MALLOC = 0,
ALLOC_METHOD_MMAP = 1,
ALLOC_METHOD_POOL = 2, // Phase 6.9.1: L2 Pool allocations (2-32KB)
ALLOC_METHOD_L25_POOL = 3, // Phase 6.13: L2.5 Pool allocations (64KB-1MB)
} AllocMethod;
typedef struct {
uint32_t magic; // Magic number for validation
AllocMethod method; // Allocation method (malloc/mmap)
size_t size; // Original size (for munmap)
uintptr_t alloc_site; // Call-site address
size_t class_bytes; // Size class for caching (0=no cache)
uintptr_t owner_tid; // Owning thread (for Mid/Tiny per-thread fast path). 0 if unknown
} AllocHeader;
typedef enum {
FREE_THERMAL_HOT, // すぐ再利用 → 何もしないKEEP
FREE_THERMAL_WARM, // 中間 → MADV_FREEmunmapしない
FREE_THERMAL_COLD // 長期未使用 → batchDONTNEED
} FreeThermal;
// ===========================================================================
// Thermal Classification (Phase 6.4 P1)
// ===========================================================================
// Classify allocation thermal state based on size
// Args: size - allocation size in bytes
// Returns: FreeThermal enum (HOT/WARM/COLD)
//
// Thermal States:
// - HOT (< 1MB): Likely to be reused soon → keep VA mapped
// - WARM (1-2MB): Medium reuse → MADV_FREE (return physical pages only)
// - COLD (>= 2MB): Low reuse → batch DONTNEED (return VA + physical)
//
// Used by FREE_POLICY_ADAPTIVE to optimize memory release strategy
static inline FreeThermal hak_classify_thermal(size_t size) {
if (size >= THERMAL_COLD_THRESHOLD) {
return FREE_THERMAL_COLD; // >= 2MB → COLD
} else if (size >= THERMAL_WARM_THRESHOLD) {
return FREE_THERMAL_WARM; // 1MB-2MB → WARM
} else {
return FREE_THERMAL_HOT; // < 1MB → HOT
}
}
// ===========================================================================
// THP Policy Application (Phase 6.4 P4)
// ===========================================================================
// Apply Transparent Huge Pages (THP) policy to mmap'd region
// Args: ptr - pointer to mmap'd memory region
// size - size of region in bytes
//
// THP Policies:
// - THP_POLICY_OFF: MADV_NOHUGEPAGE for all (disable THP)
// - THP_POLICY_AUTO: MADV_HUGEPAGE for >= 2MB only (default, balanced)
// - THP_POLICY_ON: MADV_HUGEPAGE for all >= 1MB (aggressive)
//
// Benefits of THP:
// - Reduced TLB misses (2MB pages vs 4KB pages = 512x reduction)
// - Improved cache locality
// - Lower page table overhead
//
// Set via HAKMEM_THP environment variable
static inline void hak_apply_thp_policy(void* ptr, size_t size) {
#ifdef __linux__
if (!ptr) return; // Safety check
THPPolicy policy = g_hakem_config.thp_policy;
if (policy == THP_POLICY_OFF) {
madvise(ptr, size, MADV_NOHUGEPAGE);
} else if (policy == THP_POLICY_ON) {
madvise(ptr, size, MADV_HUGEPAGE);
} else { // AUTO
if (size >= THP_THRESHOLD) {
madvise(ptr, size, MADV_HUGEPAGE); // >= 2MB → THP
} else {
madvise(ptr, size, MADV_NOHUGEPAGE); // < 2MB → no THP
}
}
#else
(void)ptr;
(void)size;
#endif
}
// ===========================================================================
// Allocation Strategies (static inline = zero overhead)
// ===========================================================================
// Strategy 1: malloc (for small/medium allocations)
// Args: size - requested allocation size (user bytes, excluding header)
// Returns: User pointer (after header), or NULL on failure
//
// Implementation:
// - Allocates HEADER_SIZE + size using system malloc()
// - Writes AllocHeader with MALLOC method
// - Returns pointer after header (user-visible pointer)
// - O(1) allocation with kernel slab allocator (< 2MB)
static inline void* hak_alloc_malloc_impl(size_t size) {
// Feature check
if (!HAK_ENABLED_ALLOC(HAKMEM_FEATURE_MALLOC)) {
return NULL; // malloc disabled
}
// Allocate space for header + user data
void* raw = malloc(HEADER_SIZE + size);
if (!raw) return NULL;
// Write header
AllocHeader* hdr = (AllocHeader*)raw;
hdr->magic = HAKMEM_MAGIC;
hdr->method = ALLOC_METHOD_MALLOC;
hdr->size = size;
hdr->alloc_site = 0; // Set by caller (hak_alloc_at)
hdr->class_bytes = 0; // Set by caller if cacheable
// Return user pointer (skip header)
return (char*)raw + HEADER_SIZE;
}
// Strategy 2: mmap (for large allocations)
// Args: size - requested allocation size (user bytes, excluding header)
// Returns: User pointer (after header), or NULL on failure
//
// Implementation:
// - Rounds up (HEADER_SIZE + size) to page boundary
// - Uses mmap(MAP_ANONYMOUS) for zero-overhead allocation
// - Applies THP policy (MADV_HUGEPAGE/NOHUGEPAGE)
// - Stores aligned_size in header->size (for munmap)
// - O(1) allocation with kernel buddy allocator (>= 2MB)
static inline void* hak_alloc_mmap_impl(size_t size) {
#ifdef __linux__
// Feature check
if (!HAK_ENABLED_ALLOC(HAKMEM_FEATURE_MMAP)) {
return NULL; // mmap disabled, fallback to malloc
}
// Round up to page size (header + user data)
long page_size = sysconf(_SC_PAGESIZE);
size_t total_size = HEADER_SIZE + size;
size_t aligned_size = (total_size + page_size - 1) & ~(page_size - 1);
// Phase 6.11.1: Try whale cache first (for ≥2MB allocations)
void* raw = hkm_whale_get(aligned_size);
if (!raw) {
// Whale cache miss: allocate via mmap
raw = hkm_sys_mmap(aligned_size);
if (!raw) {
return NULL;
}
}
// else: Whale cache hit! Reuse existing mapping (no mmap syscall)
// Apply THP policy (Phase 6.4 P4)
hak_apply_thp_policy(raw, aligned_size);
// Write header
AllocHeader* hdr = (AllocHeader*)raw;
hdr->magic = HAKMEM_MAGIC;
hdr->method = ALLOC_METHOD_MMAP;
hdr->size = aligned_size; // Store aligned size for munmap
hdr->alloc_site = 0; // Set by caller (hak_alloc_at)
hdr->class_bytes = 0; // Set by caller if cacheable
// Return user pointer (skip header)
return (char*)raw + HEADER_SIZE;
#else
// Fallback to malloc on non-Linux
return hak_alloc_malloc_impl(size);
#endif
}
// ===========================================================================
// Header Helpers (with NULL safety)
// ===========================================================================
// Get raw pointer (before header) from user pointer
// Returns: Raw allocation pointer (header starts here)
static inline void* hak_header_get_raw(void* user_ptr) {
if (!user_ptr) return NULL;
return (char*)user_ptr - HEADER_SIZE;
}
// Get header from user pointer
// Returns: Pointer to AllocHeader, or NULL if user_ptr is NULL
static inline AllocHeader* hak_header_from_user(void* user_ptr) {
if (!user_ptr) return NULL;
return (AllocHeader*)hak_header_get_raw(user_ptr);
}
// Validate header magic number
// Returns: 1 if valid, 0 if invalid or NULL
static inline int hak_header_validate(AllocHeader* hdr) {
if (!hdr) return 0;
return hdr->magic == HAKMEM_MAGIC;
}
// Set allocation site in header (for cache key)
static inline void hak_header_set_site(void* user_ptr, uintptr_t site_id) {
AllocHeader* hdr = hak_header_from_user(user_ptr);
if (hdr) {
hdr->alloc_site = site_id;
}
}
// Set size class in header (for BigCache)
static inline void hak_header_set_class(void* user_ptr, size_t class_bytes) {
AllocHeader* hdr = hak_header_from_user(user_ptr);
if (hdr) {
hdr->class_bytes = class_bytes;
}
}
// ===========================================================================
// Free Strategies (static inline = zero overhead)
// ===========================================================================
// Free malloc-allocated block
// Args: raw - pointer to raw allocation (including header)
static inline void hak_free_malloc_impl(void* raw) {
if (!raw) return; // Safety check
free(raw);
}
// Free mmap-allocated block
// Args: raw - pointer to raw allocation (including header)
// size - aligned size (from header->size)
static inline void hak_free_mmap_impl(void* raw, size_t size) {
if (!raw) return; // Safety check
#ifdef __linux__
munmap(raw, size);
#else
free(raw); // Fallback on non-Linux
#endif
}
// Apply Hot/Warm/Cold free policy (Phase 6.4 P1)
// Args: raw - pointer to raw allocation (including header)
// size - allocated size
// thermal - thermal classification (HOT/WARM/COLD)
// Returns: 1 if handled (no further action needed), 0 if caller should continue (batch/direct free)
static inline int hak_free_with_thermal_policy(void* raw, size_t size, FreeThermal thermal) {
if (!raw) return 1; // NULL is always "handled" (no-op)
FreePolicy policy = g_hakem_config.free_policy;
if (policy == FREE_POLICY_KEEP) {
// KEEP: 何もしないVA保持、madviseもしない
return 1; // Handled (kept)
} else if (policy == FREE_POLICY_ADAPTIVE) {
// ADAPTIVE: Hot/Warm/Cold判定
switch (thermal) {
case FREE_THERMAL_HOT:
// HOT (< 1MB): 何もしない(すぐ再利用される)
return 1; // Handled (kept)
case FREE_THERMAL_WARM:
// WARM (1-2MB): MADV_FREEmunmapしない、物理ページのみ返す
#ifdef __linux__
madvise(raw, size, MADV_FREE);
#endif
return 1; // Handled
case FREE_THERMAL_COLD:
// COLD (>= 2MB): batch既存の処理
return 0; // Not handled, caller should use batch
}
}
// FREE_POLICY_BATCH (default): caller handles
return 0; // Not handled
}
#endif // HAKMEM_INTERNAL_H