Files
hakmem/core/front/tiny_unified_cache.h

234 lines
8.9 KiB
C
Raw Normal View History

Phase 23 Unified Cache + PageFaultTelemetry generalization: Mid/VM page-fault bottleneck identified Summary: - Phase 23 Unified Cache: +30% improvement (Random Mixed 256B: 18.18M → 23.68M ops/s) - PageFaultTelemetry: Extended to generic buckets (C0-C7, MID, L25, SSM) - Measurement-driven decision: Mid/VM page-faults (80-100K) >> Tiny (6K) → prioritize Mid/VM optimization Phase 23 Changes: 1. Unified Cache implementation (core/front/tiny_unified_cache.{c,h}) - Direct SuperSlab carve (TLS SLL bypass) - Self-contained pop-or-refill pattern - ENV: HAKMEM_TINY_UNIFIED_CACHE=1, HAKMEM_TINY_UNIFIED_C{0-7}=128 2. Fast path pruning (tiny_alloc_fast.inc.h, tiny_free_fast_v2.inc.h) - Unified ON → direct cache access (skip all intermediate layers) - Alloc: unified_cache_pop_or_refill() → immediate fail to slow - Free: unified_cache_push() → fallback to SLL only if full PageFaultTelemetry Changes: 3. Generic bucket architecture (core/box/pagefault_telemetry_box.{c,h}) - PF_BUCKET_{C0-C7, MID, L25, SSM} for domain-specific measurement - Integration: hak_pool_try_alloc(), l25_alloc_new_run(), shared_pool_allocate_superslab_unlocked() 4. Measurement results (Random Mixed 500K / 256B): - Tiny C2-C7: 2-33 pages, high reuse (64-3.8 touches/page) - SSM: 512 pages (initialization footprint) - MID/L25: 0 (unused in this workload) - Mid/Large VM benchmarks: 80-100K page-faults (13-16x higher than Tiny) Ring Cache Enhancements: 5. Hot Ring Cache (core/front/tiny_ring_cache.{c,h}) - ENV: HAKMEM_TINY_HOT_RING_ENABLE=1, HAKMEM_TINY_HOT_RING_C{0-7}=size - Conditional compilation cleanup Documentation: 6. Analysis reports - RANDOM_MIXED_BOTTLENECK_ANALYSIS.md: Page-fault breakdown - RANDOM_MIXED_SUMMARY.md: Phase 23 summary - RING_CACHE_ACTIVATION_GUIDE.md: Ring cache usage - CURRENT_TASK.md: Updated with Phase 23 results and Phase 24 plan Next Steps (Phase 24): - Target: Mid/VM PageArena/HotSpanBox (page-fault reduction 80-100K → 30-40K) - Tiny SSM optimization deferred (low ROI, ~6K page-faults already optimal) - Expected improvement: +30-50% for Mid/Large workloads Generated with Claude Code Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-17 02:47:58 +09:00
// tiny_unified_cache.h - Phase 23: Unified Frontend Cache (tcache-style)
//
// Goal: Flatten 4-5 layer frontend cascade into single-layer array cache
// Target: +50-100% performance (20.3M → 30-40M ops/s)
//
// Design (Task-sensei analysis):
// - Replace: Ring → FastCache → SFC → TLS SLL (4 layers, 8-10 cache misses)
// - With: Single unified array cache per class (1 layer, 2-3 cache misses)
// - Fallback: Direct SuperSlab refill (skip intermediate layers)
//
// Performance:
// - Alloc: 2-3 cache misses (TLS access + array access)
// - Free: 2-3 cache misses (similar to System malloc tcache)
// - vs Current: 8-10 cache misses → 2-3 cache misses (70% reduction)
//
// ENV Variables:
// HAKMEM_TINY_UNIFIED_CACHE=1 # Enable Unified cache (default: 0, OFF)
// HAKMEM_TINY_UNIFIED_C0=128 # C0 cache size (default: 128)
// ...
// HAKMEM_TINY_UNIFIED_C7=128 # C7 cache size (default: 128)
#ifndef HAK_FRONT_TINY_UNIFIED_CACHE_H
#define HAK_FRONT_TINY_UNIFIED_CACHE_H
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include "../hakmem_build_flags.h"
#include "../hakmem_tiny_config.h" // For TINY_NUM_CLASSES
// ============================================================================
// Unified Cache Structure (per class)
// ============================================================================
typedef struct {
void** slots; // Dynamic array (allocated at init, power-of-2 size)
uint16_t head; // Pop index (consumer)
uint16_t tail; // Push index (producer)
uint16_t capacity; // Cache size (power of 2 for fast modulo: & (capacity-1))
uint16_t mask; // Capacity - 1 (for fast modulo)
} TinyUnifiedCache;
// ============================================================================
// External TLS Variables (defined in tiny_unified_cache.c)
// ============================================================================
extern __thread TinyUnifiedCache g_unified_cache[TINY_NUM_CLASSES];
// ============================================================================
// Metrics (Phase 23, optional for debugging)
// ============================================================================
#if !HAKMEM_BUILD_RELEASE
extern __thread uint64_t g_unified_cache_hit[TINY_NUM_CLASSES]; // Alloc hits
extern __thread uint64_t g_unified_cache_miss[TINY_NUM_CLASSES]; // Alloc misses
extern __thread uint64_t g_unified_cache_push[TINY_NUM_CLASSES]; // Free pushes
extern __thread uint64_t g_unified_cache_full[TINY_NUM_CLASSES]; // Free full (fallback to SuperSlab)
#endif
// ============================================================================
// ENV Control (cached, lazy init)
// ============================================================================
// Enable flag (default: 0, OFF)
static inline int unified_cache_enabled(void) {
static int g_enable = -1;
if (__builtin_expect(g_enable == -1, 0)) {
const char* e = getenv("HAKMEM_TINY_UNIFIED_CACHE");
g_enable = (e && *e && *e != '0') ? 1 : 0;
#if !HAKMEM_BUILD_RELEASE
if (g_enable) {
fprintf(stderr, "[Unified-INIT] unified_cache_enabled() = %d\n", g_enable);
fflush(stderr);
}
#endif
}
return g_enable;
}
// Per-class capacity (default: 128 for all classes)
static inline size_t unified_capacity(int class_idx) {
static size_t g_cap[TINY_NUM_CLASSES] = {0};
if (__builtin_expect(g_cap[class_idx] == 0, 0)) {
char env_name[64];
snprintf(env_name, sizeof(env_name), "HAKMEM_TINY_UNIFIED_C%d", class_idx);
const char* e = getenv(env_name);
g_cap[class_idx] = (e && *e) ? (size_t)atoi(e) : 128; // Default: 128
// Round up to power of 2 (for fast modulo)
if (g_cap[class_idx] < 32) g_cap[class_idx] = 32;
if (g_cap[class_idx] > 512) g_cap[class_idx] = 512;
// Ensure power of 2
size_t pow2 = 32;
while (pow2 < g_cap[class_idx]) pow2 *= 2;
g_cap[class_idx] = pow2;
#if !HAKMEM_BUILD_RELEASE
fprintf(stderr, "[Unified-INIT] C%d capacity = %zu (power of 2)\n", class_idx, g_cap[class_idx]);
fflush(stderr);
#endif
}
return g_cap[class_idx];
}
// ============================================================================
// Init/Shutdown Forward Declarations
// ============================================================================
void unified_cache_init(void);
void unified_cache_shutdown(void);
void unified_cache_print_stats(void);
// ============================================================================
// Phase 23-D: Self-Contained Refill (Box U1 + Box U2 integration)
// ============================================================================
// Batch refill from SuperSlab (called on cache miss)
// Returns: BASE pointer (first block), or NULL if failed
void* unified_cache_refill(int class_idx);
// ============================================================================
// Ultra-Fast Pop/Push (2-3 cache misses, tcache-style)
// ============================================================================
// Pop from unified cache (alloc fast path)
// Returns: BASE pointer (caller must convert to USER with +1)
static inline void* unified_cache_pop(int class_idx) {
// Fast path: Unified cache disabled → return NULL immediately
if (__builtin_expect(!unified_cache_enabled(), 0)) return NULL;
TinyUnifiedCache* cache = &g_unified_cache[class_idx]; // 1 cache miss (TLS)
// Lazy init check (once per thread, per class)
if (__builtin_expect(cache->slots == NULL, 0)) {
unified_cache_init(); // First call in this thread
// Re-check after init (may fail if allocation failed)
if (cache->slots == NULL) return NULL;
}
// Empty check
if (__builtin_expect(cache->head == cache->tail, 0)) {
#if !HAKMEM_BUILD_RELEASE
g_unified_cache_miss[class_idx]++;
#endif
return NULL; // Empty
}
// Pop from head (consumer)
void* base = cache->slots[cache->head]; // 1 cache miss (array access)
cache->head = (cache->head + 1) & cache->mask; // Fast modulo (power of 2)
#if !HAKMEM_BUILD_RELEASE
g_unified_cache_hit[class_idx]++;
#endif
return base; // Return BASE pointer (2-3 cache misses total)
}
// Push to unified cache (free fast path)
// Input: BASE pointer (caller must pass BASE, not USER)
// Returns: 1=SUCCESS, 0=FULL
static inline int unified_cache_push(int class_idx, void* base) {
// Fast path: Unified cache disabled → return 0 (not handled)
if (__builtin_expect(!unified_cache_enabled(), 0)) return 0;
TinyUnifiedCache* cache = &g_unified_cache[class_idx]; // 1 cache miss (TLS)
// Lazy init check (once per thread, per class)
if (__builtin_expect(cache->slots == NULL, 0)) {
unified_cache_init(); // First call in this thread
// Re-check after init (may fail if allocation failed)
if (cache->slots == NULL) return 0;
}
uint16_t next_tail = (cache->tail + 1) & cache->mask;
// Full check (leave 1 slot empty to distinguish full/empty)
if (__builtin_expect(next_tail == cache->head, 0)) {
#if !HAKMEM_BUILD_RELEASE
g_unified_cache_full[class_idx]++;
#endif
return 0; // Full
}
// Push to tail (producer)
cache->slots[cache->tail] = base; // 1 cache miss (array write)
cache->tail = next_tail;
#if !HAKMEM_BUILD_RELEASE
g_unified_cache_push[class_idx]++;
#endif
return 1; // SUCCESS (2-3 cache misses total)
}
// ============================================================================
// Phase 23-D: Self-Contained Pop-or-Refill (tcache-style, single-layer)
// ============================================================================
// All-in-one: Pop from cache, or refill from SuperSlab on miss
// Returns: BASE pointer (caller converts to USER), or NULL if failed
// Design: Self-contained, bypasses all other frontend layers (Ring/FC/SFC/SLL)
static inline void* unified_cache_pop_or_refill(int class_idx) {
// Fast path: Unified cache disabled → return NULL (caller uses legacy cascade)
if (__builtin_expect(!unified_cache_enabled(), 0)) return NULL;
TinyUnifiedCache* cache = &g_unified_cache[class_idx]; // 1 cache miss (TLS)
// Lazy init check (once per thread, per class)
if (__builtin_expect(cache->slots == NULL, 0)) {
unified_cache_init();
if (cache->slots == NULL) return NULL;
}
// Try pop from cache (fast path)
if (__builtin_expect(cache->head != cache->tail, 1)) {
void* base = cache->slots[cache->head]; // 1 cache miss (array access)
cache->head = (cache->head + 1) & cache->mask;
#if !HAKMEM_BUILD_RELEASE
g_unified_cache_hit[class_idx]++;
#endif
return base; // Hit! (2-3 cache misses total)
}
// Cache miss → Batch refill from SuperSlab
#if !HAKMEM_BUILD_RELEASE
g_unified_cache_miss[class_idx]++;
#endif
return unified_cache_refill(class_idx); // Refill + return first block
}
#endif // HAK_FRONT_TINY_UNIFIED_CACHE_H