Files
hakmem/core/hakmem_tiny_superslab.c

822 lines
28 KiB
C
Raw Normal View History

// hakmem_tiny_superslab.c - SuperSlab allocator implementation (Phase 6.22)
// Purpose: 2MB aligned slab allocation with fast pointer→slab lookup
// License: MIT
// Date: 2025-10-24
#include "hakmem_tiny_superslab.h"
#include "hakmem_super_registry.h" // Phase 1: Registry integration
#include <sys/mman.h>
#include <sys/resource.h>
#include <errno.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h> // getenv, atoi
#include <pthread.h>
#include <unistd.h>
#include <sys/resource.h> // getrlimit for OOM diagnostics
#include <sys/mman.h>
static int g_ss_force_lg = -1;
static _Atomic int g_ss_populate_once = 0;
// ============================================================================
// Global Statistics
// ============================================================================
static pthread_mutex_t g_superslab_lock = PTHREAD_MUTEX_INITIALIZER;
uint64_t g_superslabs_allocated = 0; // Non-static for debugging
uint64_t g_superslabs_freed = 0; // Phase 7.6: Non-static for test access
uint64_t g_bytes_allocated = 0; // Non-static for debugging
// Per-class counters for gating/metrics (Tiny classes = 8)
uint64_t g_ss_alloc_by_class[8] = {0};
uint64_t g_ss_freed_by_class[8] = {0};
typedef struct SuperslabCacheEntry {
struct SuperslabCacheEntry* next;
} SuperslabCacheEntry;
static SuperslabCacheEntry* g_ss_cache_head[8] = {0};
static size_t g_ss_cache_count[8] = {0};
static size_t g_ss_cache_cap[8] = {0};
static size_t g_ss_precharge_target[8] = {0};
static _Atomic int g_ss_precharge_done[8] = {0};
static int g_ss_cache_enabled = 0;
static pthread_once_t g_ss_cache_once = PTHREAD_ONCE_INIT;
static pthread_mutex_t g_ss_cache_lock[8];
uint64_t g_ss_cache_hits[8] = {0};
uint64_t g_ss_cache_misses[8] = {0};
uint64_t g_ss_cache_puts[8] = {0};
uint64_t g_ss_cache_drops[8] = {0};
uint64_t g_ss_cache_precharged[8] = {0};
uint64_t g_superslabs_reused = 0;
uint64_t g_superslabs_cached = 0;
static void ss_cache_global_init(void) {
for (int i = 0; i < 8; i++) {
pthread_mutex_init(&g_ss_cache_lock[i], NULL);
}
}
static inline void ss_cache_ensure_init(void) {
pthread_once(&g_ss_cache_once, ss_cache_global_init);
}
static void* ss_os_acquire(uint8_t size_class, size_t ss_size, uintptr_t ss_mask, int populate);
static void ss_cache_precharge(uint8_t size_class, size_t ss_size, uintptr_t ss_mask);
static SuperslabCacheEntry* ss_cache_pop(uint8_t size_class);
static int ss_cache_push(uint8_t size_class, SuperSlab* ss);
static inline void ss_stats_os_alloc(uint8_t size_class, size_t ss_size) {
pthread_mutex_lock(&g_superslab_lock);
g_superslabs_allocated++;
if (size_class < 8) {
g_ss_alloc_by_class[size_class]++;
}
g_bytes_allocated += ss_size;
pthread_mutex_unlock(&g_superslab_lock);
}
static inline void ss_stats_cache_reuse(void) {
pthread_mutex_lock(&g_superslab_lock);
g_superslabs_reused++;
pthread_mutex_unlock(&g_superslab_lock);
}
static inline void ss_stats_cache_store(void) {
pthread_mutex_lock(&g_superslab_lock);
g_superslabs_cached++;
pthread_mutex_unlock(&g_superslab_lock);
}
// ============================================================================
// Phase 8.3: ACE (Adaptive Cache Engine) State
// ============================================================================
SuperSlabACEState g_ss_ace[TINY_NUM_CLASSES_SS] = {{0}};
// Phase 8.3: hak_now_ns() is now defined in hakmem_tiny_superslab.h as static inline
// ============================================================================
// Diagnostics
// ============================================================================
static void log_superslab_oom_once(size_t ss_size, size_t alloc_size, int err) {
static int logged = 0;
if (logged) return;
logged = 1;
struct rlimit rl = {0};
if (getrlimit(RLIMIT_AS, &rl) != 0) {
rl.rlim_cur = RLIM_INFINITY;
rl.rlim_max = RLIM_INFINITY;
}
unsigned long vm_size_kb = 0;
unsigned long vm_rss_kb = 0;
FILE* status = fopen("/proc/self/status", "r");
if (status) {
char line[256];
while (fgets(line, sizeof(line), status)) {
if (strncmp(line, "VmSize:", 7) == 0) {
(void)sscanf(line + 7, "%lu", &vm_size_kb);
} else if (strncmp(line, "VmRSS:", 6) == 0) {
(void)sscanf(line + 6, "%lu", &vm_rss_kb);
}
}
fclose(status);
}
char rl_cur_buf[32];
char rl_max_buf[32];
if (rl.rlim_cur == RLIM_INFINITY) {
strcpy(rl_cur_buf, "inf");
} else {
snprintf(rl_cur_buf, sizeof(rl_cur_buf), "%llu", (unsigned long long)rl.rlim_cur);
}
if (rl.rlim_max == RLIM_INFINITY) {
strcpy(rl_max_buf, "inf");
} else {
snprintf(rl_max_buf, sizeof(rl_max_buf), "%llu", (unsigned long long)rl.rlim_max);
}
fprintf(stderr,
"[SS OOM] mmap failed: err=%d ss_size=%zu alloc_size=%zu "
"alloc=%llu freed=%llu bytes=%llu "
"RLIMIT_AS(cur=%s max=%s) VmSize=%lu kB VmRSS=%lu kB\n",
err,
ss_size,
alloc_size,
(unsigned long long)g_superslabs_allocated,
(unsigned long long)g_superslabs_freed,
(unsigned long long)g_bytes_allocated,
rl_cur_buf,
rl_max_buf,
vm_size_kb,
vm_rss_kb);
}
static void* ss_os_acquire(uint8_t size_class, size_t ss_size, uintptr_t ss_mask, int populate) {
void* ptr = NULL;
#ifdef MAP_ALIGNED_SUPER
int map_flags = MAP_PRIVATE | MAP_ANONYMOUS | MAP_ALIGNED_SUPER;
#ifdef MAP_POPULATE
if (populate) {
map_flags |= MAP_POPULATE;
}
#endif
ptr = mmap(NULL, ss_size,
PROT_READ | PROT_WRITE,
map_flags,
-1, 0);
if (ptr != MAP_FAILED) {
if (((uintptr_t)ptr & ss_mask) == 0) {
ss_stats_os_alloc(size_class, ss_size);
return ptr;
}
munmap(ptr, ss_size);
ptr = NULL;
} else {
log_superslab_oom_once(ss_size, ss_size, errno);
}
#endif
size_t alloc_size = ss_size * 2;
int flags = MAP_PRIVATE | MAP_ANONYMOUS;
#ifdef MAP_POPULATE
if (populate) {
flags |= MAP_POPULATE;
}
#endif
void* raw = mmap(NULL, alloc_size,
PROT_READ | PROT_WRITE,
flags,
-1, 0);
if (raw == MAP_FAILED) {
log_superslab_oom_once(ss_size, alloc_size, errno);
return NULL;
}
uintptr_t raw_addr = (uintptr_t)raw;
uintptr_t aligned_addr = (raw_addr + ss_mask) & ~ss_mask;
ptr = (void*)aligned_addr;
size_t prefix_size = aligned_addr - raw_addr;
if (prefix_size > 0) {
munmap(raw, prefix_size);
}
size_t suffix_size = alloc_size - prefix_size - ss_size;
if (suffix_size > 0) {
if (populate) {
#ifdef MADV_DONTNEED
madvise((char*)ptr + ss_size, suffix_size, MADV_DONTNEED);
#endif
} else {
munmap((char*)ptr + ss_size, suffix_size);
}
}
ss_stats_os_alloc(size_class, ss_size);
return ptr;
}
static void ss_cache_precharge(uint8_t size_class, size_t ss_size, uintptr_t ss_mask) {
if (!g_ss_cache_enabled) return;
if (size_class >= 8) return;
if (g_ss_precharge_target[size_class] == 0) return;
if (atomic_load_explicit(&g_ss_precharge_done[size_class], memory_order_acquire)) return;
ss_cache_ensure_init();
pthread_mutex_lock(&g_ss_cache_lock[size_class]);
size_t target = g_ss_precharge_target[size_class];
size_t cap = g_ss_cache_cap[size_class];
size_t desired = target;
if (cap != 0 && desired > cap) {
desired = cap;
}
while (g_ss_cache_count[size_class] < desired) {
void* raw = ss_os_acquire(size_class, ss_size, ss_mask, 1);
if (!raw) {
break;
}
SuperslabCacheEntry* entry = (SuperslabCacheEntry*)raw;
entry->next = g_ss_cache_head[size_class];
g_ss_cache_head[size_class] = entry;
g_ss_cache_count[size_class]++;
g_ss_cache_precharged[size_class]++;
}
atomic_store_explicit(&g_ss_precharge_done[size_class], 1, memory_order_release);
pthread_mutex_unlock(&g_ss_cache_lock[size_class]);
}
static SuperslabCacheEntry* ss_cache_pop(uint8_t size_class) {
if (!g_ss_cache_enabled) return NULL;
if (size_class >= 8) return NULL;
ss_cache_ensure_init();
pthread_mutex_lock(&g_ss_cache_lock[size_class]);
SuperslabCacheEntry* entry = g_ss_cache_head[size_class];
if (entry) {
g_ss_cache_head[size_class] = entry->next;
if (g_ss_cache_count[size_class] > 0) {
g_ss_cache_count[size_class]--;
}
entry->next = NULL;
g_ss_cache_hits[size_class]++;
} else {
g_ss_cache_misses[size_class]++;
}
pthread_mutex_unlock(&g_ss_cache_lock[size_class]);
return entry;
}
static int ss_cache_push(uint8_t size_class, SuperSlab* ss) {
if (!g_ss_cache_enabled) return 0;
if (size_class >= 8) return 0;
ss_cache_ensure_init();
pthread_mutex_lock(&g_ss_cache_lock[size_class]);
size_t cap = g_ss_cache_cap[size_class];
if (cap != 0 && g_ss_cache_count[size_class] >= cap) {
g_ss_cache_drops[size_class]++;
pthread_mutex_unlock(&g_ss_cache_lock[size_class]);
return 0;
}
SuperslabCacheEntry* entry = (SuperslabCacheEntry*)ss;
entry->next = g_ss_cache_head[size_class];
g_ss_cache_head[size_class] = entry;
g_ss_cache_count[size_class]++;
g_ss_cache_puts[size_class]++;
pthread_mutex_unlock(&g_ss_cache_lock[size_class]);
return 1;
}
// ============================================================================
// SuperSlab Allocation (2MB aligned)
// ============================================================================
SuperSlab* superslab_allocate(uint8_t size_class) {
// Optional fault injection for testing: HAKMEM_TINY_SS_FAULT_RATE=N → 1/N で失敗
static int fault_rate = -1; // -1=unparsed, 0=disabled, >0=rate
static __thread unsigned long fault_tick = 0;
if (__builtin_expect(fault_rate == -1, 0)) {
const char* e = getenv("HAKMEM_TINY_SS_FAULT_RATE");
if (e && *e) {
int v = atoi(e); if (v < 0) v = 0; fault_rate = v;
} else {
fault_rate = 0;
}
}
if (fault_rate > 0) {
unsigned long t = ++fault_tick;
if ((t % (unsigned long)fault_rate) == 0ul) {
return NULL; // simulate OOM
}
}
// Optional env clamp for SuperSlab size
static int env_parsed = 0;
static uint8_t g_ss_min_lg_env = SUPERSLAB_LG_MIN;
static uint8_t g_ss_max_lg_env = SUPERSLAB_LG_MAX;
if (!env_parsed) {
char* maxmb = getenv("HAKMEM_TINY_SS_MAX_MB");
if (maxmb) {
int m = atoi(maxmb); if (m == 1) g_ss_max_lg_env = 20; else if (m == 2) g_ss_max_lg_env = 21;
}
char* minmb = getenv("HAKMEM_TINY_SS_MIN_MB");
if (minmb) {
int m = atoi(minmb); if (m == 1) g_ss_min_lg_env = 20; else if (m == 2) g_ss_min_lg_env = 21;
}
if (g_ss_min_lg_env > g_ss_max_lg_env) g_ss_min_lg_env = g_ss_max_lg_env;
const char* force_lg_env = getenv("HAKMEM_TINY_SS_FORCE_LG");
if (force_lg_env && *force_lg_env) {
int v = atoi(force_lg_env);
if (v >= SUPERSLAB_LG_MIN && v <= SUPERSLAB_LG_MAX) {
g_ss_force_lg = v;
g_ss_min_lg_env = g_ss_max_lg_env = v;
}
}
size_t precharge_default = 0;
const char* precharge_env = getenv("HAKMEM_TINY_SS_PRECHARGE");
if (precharge_env && *precharge_env) {
long v = atol(precharge_env);
if (v < 0) v = 0;
precharge_default = (size_t)v;
if (v > 0) {
atomic_store_explicit(&g_ss_populate_once, 1, memory_order_relaxed);
}
}
size_t cache_default = 0;
const char* cache_env = getenv("HAKMEM_TINY_SS_CACHE");
if (cache_env && *cache_env) {
long v = atol(cache_env);
if (v < 0) v = 0;
cache_default = (size_t)v;
}
for (int i = 0; i < 8; i++) {
g_ss_cache_cap[i] = cache_default;
g_ss_precharge_target[i] = precharge_default;
}
for (int i = 0; i < 8; i++) {
char name[64];
snprintf(name, sizeof(name), "HAKMEM_TINY_SS_CACHE_C%d", i);
char* cap_env = getenv(name);
if (cap_env && *cap_env) {
long v = atol(cap_env);
if (v < 0) v = 0;
g_ss_cache_cap[i] = (size_t)v;
}
snprintf(name, sizeof(name), "HAKMEM_TINY_SS_PRECHARGE_C%d", i);
char* pre_env = getenv(name);
if (pre_env && *pre_env) {
long v = atol(pre_env);
if (v < 0) v = 0;
g_ss_precharge_target[i] = (size_t)v;
if (v > 0) {
atomic_store_explicit(&g_ss_populate_once, 1, memory_order_relaxed);
}
}
if (g_ss_cache_cap[i] > 0 || g_ss_precharge_target[i] > 0) {
g_ss_cache_enabled = 1;
}
}
const char* populate_env = getenv("HAKMEM_TINY_SS_POPULATE_ONCE");
if (populate_env && atoi(populate_env) != 0) {
atomic_store_explicit(&g_ss_populate_once, 1, memory_order_relaxed);
}
env_parsed = 1;
}
uint8_t lg = (g_ss_force_lg >= 0) ? (uint8_t)g_ss_force_lg : hak_tiny_superslab_next_lg(size_class);
if (lg < g_ss_min_lg_env) lg = g_ss_min_lg_env;
if (lg > g_ss_max_lg_env) lg = g_ss_max_lg_env;
size_t ss_size = (size_t)1 << lg; // 2^20 = 1MB, 2^21 = 2MB
uintptr_t ss_mask = ss_size - 1;
int from_cache = 0;
void* ptr = NULL;
if (g_ss_cache_enabled && size_class < 8) {
ss_cache_precharge(size_class, ss_size, ss_mask);
SuperslabCacheEntry* cached = ss_cache_pop(size_class);
if (cached) {
ptr = (void*)cached;
from_cache = 1;
}
}
if (!ptr) {
int populate = atomic_exchange_explicit(&g_ss_populate_once, 0, memory_order_acq_rel);
ptr = ss_os_acquire(size_class, ss_size, ss_mask, populate);
if (!ptr) {
return NULL;
}
}
// Initialize SuperSlab header (Phase 1 Quick Win: removed memset for lazy init)
SuperSlab* ss = (SuperSlab*)ptr;
ss->magic = SUPERSLAB_MAGIC;
ss->size_class = size_class;
ss->active_slabs = 0;
ss->lg_size = lg; // Phase 8.3: Use ACE-determined lg_size (20=1MB, 21=2MB)
ss->slab_bitmap = 0;
ss->nonempty_mask = 0; // Phase 6-2.1: ChatGPT Pro P0 - init nonempty mask
ss->partial_epoch = 0;
ss->publish_hint = 0xFF;
// Initialize atomics explicitly
atomic_store_explicit(&ss->total_active_blocks, 0, memory_order_relaxed);
atomic_store_explicit(&ss->refcount, 0, memory_order_relaxed);
atomic_store_explicit(&ss->listed, 0, memory_order_relaxed);
ss->partial_next = NULL;
// Initialize all slab metadata (only up to max slabs for this size)
int max_slabs = (int)(ss_size / SLAB_SIZE);
for (int i = 0; i < max_slabs; i++) {
ss->slabs[i].freelist = NULL;
ss->slabs[i].used = 0;
ss->slabs[i].capacity = 0;
ss->slabs[i].owner_tid = 0;
// Initialize remote queue atomics
atomic_store_explicit(&ss->remote_heads[i], 0, memory_order_relaxed);
atomic_store_explicit(&ss->remote_counts[i], 0, memory_order_relaxed);
atomic_store_explicit(&ss->slab_listed[i], 0, memory_order_relaxed);
}
if (from_cache) {
ss_stats_cache_reuse();
}
// Phase 8.3: Update ACE current_lg to match allocated size
g_ss_ace[size_class].current_lg = lg;
// Phase 1: Register SuperSlab in global registry for fast lookup
// CRITICAL: Register AFTER full initialization (ss structure is ready)
uintptr_t base = (uintptr_t)ss;
if (!hak_super_register(base, ss)) {
// Registry full - this is a fatal error
fprintf(stderr, "HAKMEM FATAL: SuperSlab registry full, cannot register %p\n", ss);
// Still return ss to avoid memory leak, but lookups may fail
}
return ss;
}
// ============================================================================
// SuperSlab Deallocation
// ============================================================================
void superslab_free(SuperSlab* ss) {
if (!ss || ss->magic != SUPERSLAB_MAGIC) {
return; // Invalid SuperSlab
}
// Phase 1: Unregister SuperSlab from registry FIRST
// CRITICAL ORDER: unregister → clear magic → munmap
// This prevents new lookups from finding this SuperSlab
uintptr_t base = (uintptr_t)ss;
hak_super_unregister(base);
// Memory fence to ensure unregister is visible before magic clear
atomic_thread_fence(memory_order_release);
// Clear magic to prevent use-after-free (after unregister)
ss->magic = 0;
// Unmap entire SuperSlab using its actual size (1MB or 2MB)
size_t ss_size = (size_t)1 << ss->lg_size;
int cached = ss_cache_push(ss->size_class, ss);
if (cached) {
ss_stats_cache_store();
return;
}
munmap(ss, ss_size);
// Update statistics for actual release to OS
pthread_mutex_lock(&g_superslab_lock);
g_superslabs_freed++;
if (ss->size_class < 8) {
g_ss_freed_by_class[ss->size_class]++;
}
g_bytes_allocated -= ss_size;
pthread_mutex_unlock(&g_superslab_lock);
}
// ============================================================================
// Slab Initialization within SuperSlab
// ============================================================================
void superslab_init_slab(SuperSlab* ss, int slab_idx, size_t block_size, uint32_t owner_tid) {
if (!ss || slab_idx < 0 || slab_idx >= ss_slabs_capacity(ss)) {
return;
}
// Get slab data region (skip header in first slab)
void* slab_start = slab_data_start(ss, slab_idx);
if (slab_idx == 0) {
// First slab: skip SuperSlab header (64B) + metadata (512B) = 576B
slab_start = (char*)slab_start + 1024; // Align to 1KB for safety
}
// Calculate capacity
size_t usable_size = (slab_idx == 0) ? (SLAB_SIZE - 1024) : SLAB_SIZE;
int capacity = (int)(usable_size / block_size);
// Phase 6.24: Lazy freelist initialization
// NO freelist build here! (saves 4000-8000 cycles per slab init)
// freelist will be built on-demand when first free() is called
// Linear allocation is used until then (sequential memory access)
// Initialize slab metadata
TinySlabMeta* meta = &ss->slabs[slab_idx];
meta->freelist = NULL; // NULL = linear allocation mode
meta->used = 0;
meta->capacity = (uint16_t)capacity;
meta->owner_tid = owner_tid;
// Store slab_start in SuperSlab for later use
// (We need this for linear allocation)
// Note: We'll calculate this in superslab_alloc_from_slab() instead
// Mark slab as active
superslab_activate_slab(ss, slab_idx);
}
// ============================================================================
// Slab Bitmap Management
// ============================================================================
void superslab_activate_slab(SuperSlab* ss, int slab_idx) {
if (!ss || slab_idx < 0 || slab_idx >= ss_slabs_capacity(ss)) {
return;
}
uint32_t mask = 1u << slab_idx;
if ((ss->slab_bitmap & mask) == 0) {
ss->slab_bitmap |= mask;
ss->active_slabs++;
}
}
void superslab_deactivate_slab(SuperSlab* ss, int slab_idx) {
if (!ss || slab_idx < 0 || slab_idx >= ss_slabs_capacity(ss)) {
return;
}
uint32_t mask = 1u << slab_idx;
if (ss->slab_bitmap & mask) {
ss->slab_bitmap &= ~mask;
ss->active_slabs--;
}
}
int superslab_find_free_slab(SuperSlab* ss) {
if (!ss) return -1;
if ((int)ss->active_slabs >= ss_slabs_capacity(ss)) {
return -1; // No free slabs
}
// Find first 0 bit in bitmap
int cap = ss_slabs_capacity(ss);
for (int i = 0; i < cap; i++) {
if ((ss->slab_bitmap & (1u << i)) == 0) {
return i;
}
}
return -1;
}
// ============================================================================
// Statistics / Debugging
// ============================================================================
void superslab_print_stats(SuperSlab* ss) {
if (!ss || ss->magic != SUPERSLAB_MAGIC) {
printf("Invalid SuperSlab\n");
return;
}
printf("=== SuperSlab Stats ===\n");
printf("Address: %p\n", (void*)ss);
printf("Size class: %u\n", ss->size_class);
printf("Active slabs: %u / %d\n", ss->active_slabs, ss_slabs_capacity(ss));
printf("Bitmap: 0x%08X\n", ss->slab_bitmap);
printf("\nPer-slab details:\n");
for (int i = 0; i < ss_slabs_capacity(ss); i++) {
if (ss->slab_bitmap & (1u << i)) {
TinySlabMeta* meta = &ss->slabs[i];
printf(" Slab %2d: used=%u/%u freelist=%p owner=%u\n",
i, meta->used, meta->capacity, meta->freelist, meta->owner_tid);
}
}
printf("\n");
}
// Global statistics
void superslab_print_global_stats(void) {
pthread_mutex_lock(&g_superslab_lock);
printf("=== Global SuperSlab Stats ===\n");
printf("SuperSlabs allocated: %lu\n", g_superslabs_allocated);
printf("SuperSlabs freed: %lu\n", g_superslabs_freed);
printf("SuperSlabs active: %lu\n", g_superslabs_allocated - g_superslabs_freed);
printf("Total bytes allocated: %lu MB\n", g_bytes_allocated / (1024 * 1024));
pthread_mutex_unlock(&g_superslab_lock);
}
// ============================================================================
// Phase 8.3: ACE Statistics / Debugging
// ============================================================================
void superslab_ace_print_stats(void) {
printf("=== ACE (Adaptive Cache Engine) Stats ===\n");
const char* class_names[8] = {"8B", "16B", "24B", "32B", "40B", "48B", "56B", "64B"};
printf("Class Curr Targ Hot Allocs Refills Spills LiveBlks\n");
printf("--------------------------------------------------------------\n");
for (int i = 0; i < TINY_NUM_CLASSES_SS; i++) {
SuperSlabACEState* c = &g_ss_ace[i];
printf("%-6s %2uMB %2uMB %4u %7u %8u %7u %9u\n",
class_names[i],
(1u << c->current_lg) / (1024 * 1024),
(1u << c->target_lg) / (1024 * 1024),
c->hot_score,
c->alloc_count,
c->refill_count,
c->spill_count,
c->live_blocks);
}
printf("\n");
}
// ============================================================================
// Phase 8.3: ACE Tick Function (Promotion/Demotion Logic)
// ============================================================================
#define ACE_TICK_NS (150ULL * 1000 * 1000) // 150ms tick interval
#define ACE_COOLDOWN_NS (800ULL * 1000 * 1000) // 0.8s cooldown (anti-oscillation)
// Simplified thresholds for refill activity
#define HI_REFILL(k) (g_ss_ace[k].refill_count > 64) // High refill rate
#define MID_REFILL(k) (g_ss_ace[k].refill_count > 16) // Medium refill rate
// Object sizes per class (for capacity calculation)
// Must match TINY size classes: 8, 16, 24, 32, 40, 48, 56, 64 bytes
static const int g_tiny_obj_sizes[TINY_NUM_CLASSES_SS] = {8, 16, 24, 32, 40, 48, 56, 64};
void hak_tiny_superslab_ace_tick(int k, uint64_t now) {
if (k < 0 || k >= TINY_NUM_CLASSES_SS) return;
SuperSlabACEState* c = &g_ss_ace[k];
// Rate limiting: only tick every ACE_TICK_NS (~150ms)
if (now - c->last_tick_ns < ACE_TICK_NS) return;
// Calculate capacity for 1MB and 2MB SuperSlabs
int obj_size = g_tiny_obj_sizes[k];
double cap1MB = (double)((1U << 20) / obj_size); // 1MB capacity
double cap2MB = (double)((1U << 21) / obj_size); // 2MB capacity
// Calculate hotness score (weighted: 60% live blocks, 40% refill rate)
double hot = 0.6 * (double)c->live_blocks + 0.4 * (double)c->refill_count;
if (hot < 0) hot = 0;
if (hot > 1000) hot = 1000;
c->hot_score = (uint16_t)hot;
// Cooldown mechanism: prevent size changes within 0.8s of last change
static uint64_t last_switch_ns[TINY_NUM_CLASSES_SS] = {0};
if (now - last_switch_ns[k] >= ACE_COOLDOWN_NS) {
if (c->current_lg <= 20) {
// Promotion condition: 1MB → 2MB
// High demand (live > 75% capacity) AND high refill rate
if (c->live_blocks > 0.75 * cap1MB && HI_REFILL(k)) {
c->target_lg = 21; // Promote to 2MB
last_switch_ns[k] = now;
}
} else {
// Demotion condition: 2MB → 1MB
// Low demand (live < 35% capacity) AND low refill rate
if (c->live_blocks < 0.35 * cap2MB && !MID_REFILL(k)) {
c->target_lg = 20; // Demote to 1MB
last_switch_ns[k] = now;
}
}
}
// EMA-style decay for counters (reduce by 75% each tick)
c->alloc_count = c->alloc_count / 4;
c->refill_count = c->refill_count / 4;
c->spill_count = c->spill_count / 4;
// live_blocks is updated incrementally by alloc/free, not decayed here
c->last_tick_ns = now;
}
// ============================================================================
// Phase 8.4: ACE Observer (Registry-based, zero hot-path overhead)
// ============================================================================
// Global debug flag (set once at initialization)
static int g_ace_debug = 0;
// Registry-based observation: scan all SuperSlabs for usage stats
static void ace_observe_and_decide(int k) {
if (k < 0 || k >= TINY_NUM_CLASSES_SS) return;
SuperSlabACEState* c = &g_ss_ace[k];
// Scan Registry to count SuperSlabs and total live blocks
int ss_count = 0;
uint32_t total_live = 0;
for (int i = 0; i < SUPER_REG_SIZE; i++) {
SuperRegEntry* e = &g_super_reg[i];
// Atomic read (thread-safe)
uintptr_t base = atomic_load_explicit(
(_Atomic uintptr_t*)&e->base,
memory_order_acquire);
if (base == 0) continue; // Empty slot
// Phase 8.4: Safety check - skip if ss pointer is invalid
if (!e->ss) continue;
if (e->ss->size_class != k) continue; // Wrong class
ss_count++;
// Phase 8.4: Scan all slabs to count used blocks (zero hot-path overhead)
uint32_t ss_live = 0;
int cap_scan = ss_slabs_capacity(e->ss);
for (int slab_idx = 0; slab_idx < cap_scan; slab_idx++) {
TinySlabMeta* meta = &e->ss->slabs[slab_idx];
// Relaxed read is OK (stats only, no hot-path impact)
ss_live += meta->used;
}
total_live += ss_live;
}
// Calculate utilization
int obj_size = g_tiny_obj_sizes[k];
uint8_t current_lg = atomic_load_explicit(
(_Atomic uint8_t*)&c->current_lg,
memory_order_relaxed);
uint32_t capacity = (ss_count > 0) ? ss_count * ((1U << current_lg) / obj_size) : 1;
double util = (double)total_live / capacity;
// Update hot_score (for debugging/visualization)
c->hot_score = (uint16_t)(util * 1000);
if (c->hot_score > 1000) c->hot_score = 1000;
// Promotion/Demotion decision
uint8_t new_target = current_lg;
if (current_lg <= 20) {
// Promotion: 1MB → 2MB
if (util > 0.75) {
new_target = 21;
}
} else {
// Demotion: 2MB → 1MB
if (util < 0.35) {
new_target = 20;
}
}
// Debug output (if enabled)
if (g_ace_debug && ss_count > 0) {
fprintf(stderr, "[ACE] Class %d (%dB): ss=%d live=%u cap=%u util=%.2f%% lg=%d->%d hot=%d\n",
k, obj_size, ss_count, total_live, capacity, util * 100.0,
current_lg, new_target, c->hot_score);
}
// Atomic write (thread-safe)
if (new_target != current_lg) {
atomic_store_explicit(
(_Atomic uint8_t*)&c->target_lg,
new_target,
memory_order_release);
if (g_ace_debug) {
fprintf(stderr, "[ACE] *** Class %d: SIZE CHANGE %dMB -> %dMB (util=%.2f%%)\n",
k, 1 << (current_lg - 20), 1 << (new_target - 20), util * 100.0);
}
}
}
// Called from Learner thread (background observation)
void hak_tiny_superslab_ace_observe_all(void) {
// Initialize debug flag once
static int initialized = 0;
if (!initialized) {
const char* ace_debug = getenv("HAKMEM_ACE_DEBUG");
g_ace_debug = (ace_debug && atoi(ace_debug) != 0) ? 1 : 0;
initialized = 1;
}
for (int k = 0; k < TINY_NUM_CLASSES_SS; k++) {
ace_observe_and_decide(k);
}
}