363 lines
10 KiB
Markdown
363 lines
10 KiB
Markdown
|
|
# ChatGPT Pro Feedback - ACE Integration for hakmem
|
|||
|
|
|
|||
|
|
**Date**: 2025-10-21
|
|||
|
|
**Source**: ChatGPT Pro analysis of hakmem allocator + ACE (Agentic Context Engineering)
|
|||
|
|
|
|||
|
|
---
|
|||
|
|
|
|||
|
|
## 🎯 Executive Summary
|
|||
|
|
|
|||
|
|
ChatGPT Pro provided **actionable feedback** for improving hakmem allocator from **silver medal (2nd place)** to **gold medal (1st place)** using ACE principles.
|
|||
|
|
|
|||
|
|
### Key Recommendations
|
|||
|
|
|
|||
|
|
1. **ELO-based Strategy Selection** (highest impact)
|
|||
|
|
2. **ABI Hardening** (production readiness)
|
|||
|
|
3. **madvise Batching** (TLB optimization)
|
|||
|
|
4. **Telemetry Optimization** (<2% overhead SLO)
|
|||
|
|
5. **Expanded Test Suite** (10 new scenarios)
|
|||
|
|
|
|||
|
|
---
|
|||
|
|
|
|||
|
|
## 📊 ACE (Agentic Context Engineering) Overview
|
|||
|
|
|
|||
|
|
### What is ACE?
|
|||
|
|
|
|||
|
|
**Paper**: [Agentic Context Engineering: Evolving Contexts for Self-Improving Language Models](https://arxiv.org/html/2510.04618v1)
|
|||
|
|
|
|||
|
|
**Core Principles**:
|
|||
|
|
- **Delta Updates**: Incremental changes to avoid context collapse
|
|||
|
|
- **Three Roles**: Generator → Reflector → Curator
|
|||
|
|
- **Results**: +10.6% (Agent tasks), +8.6% (Finance), -87% adaptation latency
|
|||
|
|
|
|||
|
|
**Why it matters for hakmem**:
|
|||
|
|
- Similar to UCB1 bandit learning (already implemented)
|
|||
|
|
- Can evolve allocation strategies based on real workload feedback
|
|||
|
|
- Proven to work with online adaptation (AppWorld benchmark)
|
|||
|
|
|
|||
|
|
---
|
|||
|
|
|
|||
|
|
## 🔧 Immediate Actions (Priority Order)
|
|||
|
|
|
|||
|
|
### Priority 1: ELO-Based Strategy Selection (HIGHEST IMPACT)
|
|||
|
|
|
|||
|
|
**Current**: UCB1 with 6 discrete mmap threshold steps
|
|||
|
|
**Proposed**: ELO rating system for K candidate strategies
|
|||
|
|
|
|||
|
|
**Implementation**:
|
|||
|
|
```c
|
|||
|
|
// hakmem_elo.h
|
|||
|
|
typedef struct {
|
|||
|
|
int strategy_id;
|
|||
|
|
double elo_rating; // Start at 1500
|
|||
|
|
uint64_t wins;
|
|||
|
|
uint64_t losses;
|
|||
|
|
uint64_t draws;
|
|||
|
|
} StrategyCandidate;
|
|||
|
|
|
|||
|
|
// After each allocation batch:
|
|||
|
|
// 1. Select 2 candidates (epsilon-greedy)
|
|||
|
|
// 2. Run N samples with each
|
|||
|
|
// 3. Compare CPU time + page faults + bytes_live
|
|||
|
|
// 4. Update ELO ratings
|
|||
|
|
// 5. Top-M strategies survive
|
|||
|
|
```
|
|||
|
|
|
|||
|
|
**Why it beats UCB1**:
|
|||
|
|
- UCB1 assumes independent arms
|
|||
|
|
- ELO handles **transitivity** (if A>B and B>C, then A>C)
|
|||
|
|
- Better for **multi-objective** scoring (CPU + memory + faults)
|
|||
|
|
|
|||
|
|
**Expected Gain**: +10-20% on VM scenario (close gap with mimalloc)
|
|||
|
|
|
|||
|
|
---
|
|||
|
|
|
|||
|
|
### Priority 2: ABI Version Negotiation (PRODUCTION READINESS)
|
|||
|
|
|
|||
|
|
**Current**: No ABI versioning
|
|||
|
|
**Proposed**: Version negotiation + extensible structs
|
|||
|
|
|
|||
|
|
**Implementation**:
|
|||
|
|
```c
|
|||
|
|
// hakmem.h
|
|||
|
|
#define HAKMEM_ABI_VER 1
|
|||
|
|
|
|||
|
|
typedef struct {
|
|||
|
|
uint32_t magic; // 0x48414B4D
|
|||
|
|
uint32_t abi_version; // HAKMEM_ABI_VER
|
|||
|
|
size_t struct_size; // sizeof(AllocHeader)
|
|||
|
|
uint8_t reserved[16]; // Future expansion
|
|||
|
|
} AllocHeader;
|
|||
|
|
|
|||
|
|
// Version check in hak_init()
|
|||
|
|
int hak_check_abi_version(uint32_t client_ver) {
|
|||
|
|
if (client_ver != HAKMEM_ABI_VER) {
|
|||
|
|
fprintf(stderr, "ABI mismatch: %d vs %d\n", client_ver, HAKMEM_ABI_VER);
|
|||
|
|
return -1;
|
|||
|
|
}
|
|||
|
|
return 0;
|
|||
|
|
}
|
|||
|
|
```
|
|||
|
|
|
|||
|
|
**Why it matters**:
|
|||
|
|
- Future-proof for field additions
|
|||
|
|
- Safe multi-language bindings (Rust/Python/Node)
|
|||
|
|
- Production requirement
|
|||
|
|
|
|||
|
|
**Expected Gain**: 0% performance, 100% maintainability
|
|||
|
|
|
|||
|
|
---
|
|||
|
|
|
|||
|
|
### Priority 3: madvise Batching (TLB OPTIMIZATION)
|
|||
|
|
|
|||
|
|
**Current**: Per-allocation `madvise` calls
|
|||
|
|
**Proposed**: Batch `madvise(DONTNEED)` for freed blocks
|
|||
|
|
|
|||
|
|
**Implementation**:
|
|||
|
|
```c
|
|||
|
|
// hakmem_batch.c
|
|||
|
|
#define BATCH_THRESHOLD (4 * 1024 * 1024) // 4MB
|
|||
|
|
|
|||
|
|
typedef struct {
|
|||
|
|
void* blocks[256];
|
|||
|
|
size_t sizes[256];
|
|||
|
|
int count;
|
|||
|
|
size_t total_bytes;
|
|||
|
|
} DontneedBatch;
|
|||
|
|
|
|||
|
|
static DontneedBatch g_batch;
|
|||
|
|
|
|||
|
|
void hak_free_at(void* ptr, size_t size, hak_callsite_t site) {
|
|||
|
|
// ... existing logic
|
|||
|
|
|
|||
|
|
// Add to batch
|
|||
|
|
if (size >= 64 * 1024) { // Only batch large blocks
|
|||
|
|
g_batch.blocks[g_batch.count] = ptr;
|
|||
|
|
g_batch.sizes[g_batch.count] = size;
|
|||
|
|
g_batch.count++;
|
|||
|
|
g_batch.total_bytes += size;
|
|||
|
|
|
|||
|
|
// Flush batch if threshold reached
|
|||
|
|
if (g_batch.total_bytes >= BATCH_THRESHOLD) {
|
|||
|
|
flush_dontneed_batch(&g_batch);
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
static void flush_dontneed_batch(DontneedBatch* batch) {
|
|||
|
|
for (int i = 0; i < batch->count; i++) {
|
|||
|
|
madvise(batch->blocks[i], batch->sizes[i], MADV_DONTNEED);
|
|||
|
|
}
|
|||
|
|
batch->count = 0;
|
|||
|
|
batch->total_bytes = 0;
|
|||
|
|
}
|
|||
|
|
```
|
|||
|
|
|
|||
|
|
**Why it matters**:
|
|||
|
|
- Reduces TLB flush overhead (major factor in VM scenario)
|
|||
|
|
- mimalloc does this (one reason it's 2× faster)
|
|||
|
|
|
|||
|
|
**Expected Gain**: +20-30% on VM scenario
|
|||
|
|
|
|||
|
|
---
|
|||
|
|
|
|||
|
|
### Priority 4: Telemetry Optimization (<2% OVERHEAD)
|
|||
|
|
|
|||
|
|
**Current**: Full tracking on every allocation
|
|||
|
|
**Proposed**: Adaptive sampling + P50/P95 sketches
|
|||
|
|
|
|||
|
|
**Implementation**:
|
|||
|
|
```c
|
|||
|
|
// hakmem_telemetry.h
|
|||
|
|
typedef struct {
|
|||
|
|
uint64_t p50_size; // Median size
|
|||
|
|
uint64_t p95_size; // 95th percentile
|
|||
|
|
uint64_t count;
|
|||
|
|
uint64_t sample_rate; // 1/N sampling
|
|||
|
|
} SizeTelemetry;
|
|||
|
|
|
|||
|
|
// Adaptive sampling to keep overhead <2%
|
|||
|
|
static void update_telemetry(uintptr_t site, size_t size) {
|
|||
|
|
SiteTelemetry* telem = &g_telemetry[hash_site(site)];
|
|||
|
|
|
|||
|
|
// Sample only 1/N allocations
|
|||
|
|
if (fast_random() % telem->sample_rate != 0) {
|
|||
|
|
return; // Skip this sample
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
// Update P50/P95 using TDigest (lightweight sketch)
|
|||
|
|
tdigest_add(&telem->digest, size);
|
|||
|
|
|
|||
|
|
// Auto-adjust sample rate to keep overhead <2%
|
|||
|
|
if (telem->overhead_ns > TARGET_OVERHEAD) {
|
|||
|
|
telem->sample_rate *= 2; // Sample less frequently
|
|||
|
|
}
|
|||
|
|
}
|
|||
|
|
```
|
|||
|
|
|
|||
|
|
**Why it matters**:
|
|||
|
|
- Current overhead likely >5% on hot paths
|
|||
|
|
- <2% is production-acceptable
|
|||
|
|
|
|||
|
|
**Expected Gain**: +3-5% across all scenarios
|
|||
|
|
|
|||
|
|
---
|
|||
|
|
|
|||
|
|
### Priority 5: Expanded Test Suite (COVERAGE)
|
|||
|
|
|
|||
|
|
**Current**: 4 scenarios (JSON/MIR/VM/MIXED)
|
|||
|
|
**Proposed**: 10 additional scenarios from ChatGPT
|
|||
|
|
|
|||
|
|
**New Scenarios**:
|
|||
|
|
1. **Multi-threaded**: 8 threads × 1000 allocs (contention test)
|
|||
|
|
2. **Fragmentation**: Alternating alloc/free (worst-case)
|
|||
|
|
3. **Long-running**: 1M allocations over 60s (stability)
|
|||
|
|
4. **Size distribution**: Realistic web server (80% <1KB, 15% 1-64KB, 5% >64KB)
|
|||
|
|
5. **Lifetime distribution**: 70% short-lived, 25% medium, 5% permanent
|
|||
|
|
6. **Sequential access**: mmap → sequential read (madvise test)
|
|||
|
|
7. **Random access**: mmap → random read (madvise test)
|
|||
|
|
8. **Realloc-heavy**: 50% realloc operations (growth/shrink)
|
|||
|
|
9. **Zero-sized**: Edge cases (0-byte allocs, NULL free)
|
|||
|
|
10. **Alignment**: Strict alignment requirements (64B, 4KB)
|
|||
|
|
|
|||
|
|
**Implementation**:
|
|||
|
|
```bash
|
|||
|
|
# bench_extended.sh
|
|||
|
|
SCENARIOS=(
|
|||
|
|
"multithread:8:1000"
|
|||
|
|
"fragmentation:mixed:10000"
|
|||
|
|
"longrun:60s:1000000"
|
|||
|
|
# ... etc
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
for scenario in "${SCENARIOS[@]}"; do
|
|||
|
|
IFS=':' read -r name threads iters <<< "$scenario"
|
|||
|
|
./bench_allocators_hakmem --scenario "$name" --threads "$threads" --iterations "$iters"
|
|||
|
|
done
|
|||
|
|
```
|
|||
|
|
|
|||
|
|
**Why it matters**:
|
|||
|
|
- Current 4 scenarios are synthetic
|
|||
|
|
- Real-world workloads are more complex
|
|||
|
|
- Identify hidden performance cliffs
|
|||
|
|
|
|||
|
|
**Expected Gain**: Uncover 2-3 optimization opportunities
|
|||
|
|
|
|||
|
|
---
|
|||
|
|
|
|||
|
|
## 🔬 Technical Deep Dive: ELO vs UCB1
|
|||
|
|
|
|||
|
|
### Why ELO is Better for hakmem
|
|||
|
|
|
|||
|
|
| Aspect | UCB1 | ELO |
|
|||
|
|
|--------|------|-----|
|
|||
|
|
| **Assumes** | Independent arms | Pairwise comparisons |
|
|||
|
|
| **Handles** | Single objective | Multi-objective (composite score) |
|
|||
|
|
| **Transitivity** | No | Yes (if A>B, B>C → A>C) |
|
|||
|
|
| **Convergence** | Fast | Slower but more robust |
|
|||
|
|
| **Best for** | Simple bandits | Complex strategy evolution |
|
|||
|
|
|
|||
|
|
### Composite Score Function
|
|||
|
|
|
|||
|
|
```c
|
|||
|
|
double compute_score(AllocationStats* stats) {
|
|||
|
|
// Normalize each metric to [0, 1]
|
|||
|
|
double cpu_score = 1.0 - (stats->cpu_ns / MAX_CPU_NS);
|
|||
|
|
double pf_score = 1.0 - (stats->page_faults / MAX_PAGE_FAULTS);
|
|||
|
|
double mem_score = 1.0 - (stats->bytes_live / MAX_BYTES_LIVE);
|
|||
|
|
|
|||
|
|
// Weighted combination
|
|||
|
|
return 0.4 * cpu_score + 0.3 * pf_score + 0.3 * mem_score;
|
|||
|
|
}
|
|||
|
|
```
|
|||
|
|
|
|||
|
|
### ELO Update
|
|||
|
|
|
|||
|
|
```c
|
|||
|
|
void update_elo(StrategyCandidate* a, StrategyCandidate* b, double score_diff) {
|
|||
|
|
double expected_a = 1.0 / (1.0 + pow(10, (b->elo_rating - a->elo_rating) / 400.0));
|
|||
|
|
double actual_a = (score_diff > 0) ? 1.0 : (score_diff < 0) ? 0.0 : 0.5;
|
|||
|
|
|
|||
|
|
a->elo_rating += K_FACTOR * (actual_a - expected_a);
|
|||
|
|
b->elo_rating += K_FACTOR * ((1.0 - actual_a) - (1.0 - expected_a));
|
|||
|
|
}
|
|||
|
|
```
|
|||
|
|
|
|||
|
|
---
|
|||
|
|
|
|||
|
|
## 📈 Expected Performance Gains
|
|||
|
|
|
|||
|
|
### Conservative Estimates
|
|||
|
|
|
|||
|
|
| Optimization | JSON | MIR | VM | MIXED |
|
|||
|
|
|--------------|------|-----|-----|-------|
|
|||
|
|
| **Current** | 272 ns | 1578 ns | 36647 ns | 739 ns |
|
|||
|
|
| +ELO | 265 ns | 1450 ns | 30000 ns | 680 ns |
|
|||
|
|
| +madvise batch | 265 ns | 1450 ns | 25000 ns | 680 ns |
|
|||
|
|
| +Telemetry | 255 ns | 1400 ns | 24000 ns | 650 ns |
|
|||
|
|
| **Projected** | **255 ns** | **1400 ns** | **24000 ns** | **650 ns** |
|
|||
|
|
|
|||
|
|
### Gap Closure vs mimalloc
|
|||
|
|
|
|||
|
|
| Scenario | Current Gap | Projected Gap | Status |
|
|||
|
|
|----------|-------------|---------------|--------|
|
|||
|
|
| JSON | +7.3% | +0.6% | ✅ Close |
|
|||
|
|
| MIR | +27.9% | +13.4% | ⚠️ Better |
|
|||
|
|
| VM | +106.8% | +35.4% | ⚡ Significant! |
|
|||
|
|
| MIXED | +44.4% | +27.0% | ⚡ Significant! |
|
|||
|
|
|
|||
|
|
**Conclusion**: With these optimizations, hakmem can **close the gap from 2× to 1.35× on VM** and become **competitive for gold medal**!
|
|||
|
|
|
|||
|
|
---
|
|||
|
|
|
|||
|
|
## 🎯 Implementation Roadmap
|
|||
|
|
|
|||
|
|
### Week 1: ELO Framework (Highest ROI)
|
|||
|
|
- [ ] `hakmem_elo.h` - ELO rating system
|
|||
|
|
- [ ] Candidate strategy generation
|
|||
|
|
- [ ] Pairwise comparison harness
|
|||
|
|
- [ ] Integration with `hak_evolve_playbook()`
|
|||
|
|
|
|||
|
|
### Week 2: madvise Batching (Quick Win)
|
|||
|
|
- [ ] `hakmem_batch.c` - Batching logic
|
|||
|
|
- [ ] Threshold tuning (4MB default)
|
|||
|
|
- [ ] VM scenario re-benchmark
|
|||
|
|
|
|||
|
|
### Week 3: Telemetry Optimization
|
|||
|
|
- [ ] Adaptive sampling implementation
|
|||
|
|
- [ ] TDigest for P50/P95
|
|||
|
|
- [ ] Overhead profiling (<2% SLO)
|
|||
|
|
|
|||
|
|
### Week 4: ABI Hardening + Tests
|
|||
|
|
- [ ] Version negotiation
|
|||
|
|
- [ ] Extended test suite (10 scenarios)
|
|||
|
|
- [ ] Multi-threaded tests
|
|||
|
|
- [ ] Production readiness checklist
|
|||
|
|
|
|||
|
|
---
|
|||
|
|
|
|||
|
|
## 📚 References
|
|||
|
|
|
|||
|
|
1. **ACE Paper**: [Agentic Context Engineering](https://arxiv.org/html/2510.04618v1)
|
|||
|
|
2. **Dynamic Cheatsheet**: [Test-Time Learning](https://arxiv.org/abs/2504.07952)
|
|||
|
|
3. **AppWorld**: [9 Apps / 457 API Benchmark](https://appworld.dev/)
|
|||
|
|
4. **ACE OSS**: [GitHub Reproduction Framework](https://github.com/sci-m-wang/ACE-open)
|
|||
|
|
|
|||
|
|
---
|
|||
|
|
|
|||
|
|
## 💡 Key Takeaways
|
|||
|
|
|
|||
|
|
1. **ELO > UCB1** for multi-objective strategy selection
|
|||
|
|
2. **Batching madvise** can close 50% of the gap with mimalloc
|
|||
|
|
3. **<2% telemetry overhead** is critical for production
|
|||
|
|
4. **Extended test suite** will uncover hidden optimizations
|
|||
|
|
5. **ABI versioning** is a must for production readiness
|
|||
|
|
|
|||
|
|
**Next Step**: Implement ELO framework (Week 1) and re-benchmark!
|
|||
|
|
|
|||
|
|
---
|
|||
|
|
|
|||
|
|
**Generated**: 2025-10-21 (Based on ChatGPT Pro feedback)
|
|||
|
|
**Status**: Ready for implementation
|
|||
|
|
**Expected Outcome**: Close gap to 1.35× vs mimalloc, competitive for gold medal 🥇
|