Files
hakmem/core/hakmem_shared_pool.c

261 lines
8.2 KiB
C
Raw Normal View History

Phase 12: Shared SuperSlab Pool implementation (WIP - runtime crash) ## Summary Implemented Phase 12 Shared SuperSlab Pool (mimalloc-style) to address SuperSlab allocation churn (877 SuperSlabs → 100-200 target). ## Implementation (ChatGPT + Claude) 1. **Metadata changes** (superslab_types.h): - Added class_idx to TinySlabMeta (per-slab dynamic class) - Removed size_class from SuperSlab (no longer per-SuperSlab) - Changed owner_tid (16-bit) → owner_tid_low (8-bit) 2. **Shared Pool** (hakmem_shared_pool.{h,c}): - Global pool shared by all size classes - shared_pool_acquire_slab() - Get free slab for class_idx - shared_pool_release_slab() - Return slab when empty - Per-class hints for fast path optimization 3. **Integration** (23 files modified): - Updated all ss->size_class → meta->class_idx - Updated all meta->owner_tid → meta->owner_tid_low - superslab_refill() now uses shared pool - Free path releases empty slabs back to pool 4. **Build system** (Makefile): - Added hakmem_shared_pool.o to OBJS_BASE and TINY_BENCH_OBJS_BASE ## Status: ⚠️ Build OK, Runtime CRASH **Build**: ✅ SUCCESS - All 23 files compile without errors - Only warnings: superslab_allocate type mismatch (legacy code) **Runtime**: ❌ SEGFAULT - Crash location: sll_refill_small_from_ss() - Exit code: 139 (SIGSEGV) - Test case: ./bench_random_mixed_hakmem 1000 256 42 ## Known Issues 1. **SEGFAULT in refill path** - Likely shared_pool_acquire_slab() issue 2. **Legacy superslab_allocate()** still exists (type mismatch warning) 3. **Remaining TODOs** from design doc: - SuperSlab physical layout integration - slab_handle.h cleanup - Remove old per-class head implementation ## Next Steps 1. Debug SEGFAULT (gdb backtrace shows sll_refill_small_from_ss) 2. Fix shared_pool_acquire_slab() or superslab_init_slab() 3. Basic functionality test (1K → 100K iterations) 4. Measure SuperSlab count reduction (877 → 100-200) 5. Performance benchmark (+650-860% expected) ## Files Changed (25 files) core/box/free_local_box.c core/box/free_remote_box.c core/box/front_gate_classifier.c core/hakmem_super_registry.c core/hakmem_tiny.c core/hakmem_tiny_bg_spill.c core/hakmem_tiny_free.inc core/hakmem_tiny_lifecycle.inc core/hakmem_tiny_magazine.c core/hakmem_tiny_query.c core/hakmem_tiny_refill.inc.h core/hakmem_tiny_superslab.c core/hakmem_tiny_superslab.h core/hakmem_tiny_tls_ops.h core/slab_handle.h core/superslab/superslab_inline.h core/superslab/superslab_types.h core/tiny_debug.h core/tiny_free_fast.inc.h core/tiny_free_magazine.inc.h core/tiny_remote.c core/tiny_superslab_alloc.inc.h core/tiny_superslab_free.inc.h Makefile ## New Files (3 files) PHASE12_SHARED_SUPERSLAB_POOL_DESIGN.md core/hakmem_shared_pool.c core/hakmem_shared_pool.h 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> Co-Authored-By: ChatGPT <chatgpt@openai.com>
2025-11-13 16:33:03 +09:00
#include "hakmem_shared_pool.h"
#include "hakmem_tiny_superslab_constants.h"
#include <stdlib.h>
#include <string.h>
// Phase 12-2: SharedSuperSlabPool skeleton implementation
// Goal:
// - Centralize SuperSlab allocation/registration
// - Provide acquire_slab/release_slab APIs for later refill/free integration
// - Keep logic simple & conservative; correctness and observability first.
//
// Notes:
// - Concurrency: protected by g_shared_pool.alloc_lock for now.
// - class_hints is best-effort: read lock-free, written under lock.
// - LRU hooks left as no-op placeholders.
SharedSuperSlabPool g_shared_pool = {
.slabs = NULL,
.capacity = 0,
.total_count = 0,
.active_count = 0,
.alloc_lock = PTHREAD_MUTEX_INITIALIZER,
.class_hints = { NULL },
.lru_head = NULL,
.lru_tail = NULL,
.lru_count = 0
};
static void
shared_pool_ensure_capacity_unlocked(uint32_t min_capacity)
{
if (g_shared_pool.capacity >= min_capacity) {
return;
}
uint32_t new_cap = g_shared_pool.capacity ? g_shared_pool.capacity : 16;
while (new_cap < min_capacity) {
new_cap *= 2;
}
SuperSlab** new_slabs = (SuperSlab**)realloc(g_shared_pool.slabs,
new_cap * sizeof(SuperSlab*));
if (!new_slabs) {
// Allocation failure: keep old state; caller must handle NULL later.
return;
}
// Zero new entries to keep scanning logic simple.
memset(new_slabs + g_shared_pool.capacity, 0,
(new_cap - g_shared_pool.capacity) * sizeof(SuperSlab*));
g_shared_pool.slabs = new_slabs;
g_shared_pool.capacity = new_cap;
}
void
shared_pool_init(void)
{
// Idempotent init; safe to call from multiple early paths.
// pthread_mutex_t with static initializer is already valid.
pthread_mutex_lock(&g_shared_pool.alloc_lock);
if (g_shared_pool.capacity == 0 && g_shared_pool.slabs == NULL) {
shared_pool_ensure_capacity_unlocked(16);
}
pthread_mutex_unlock(&g_shared_pool.alloc_lock);
}
// Internal: allocate and register a new SuperSlab.
// Caller must hold alloc_lock.
static SuperSlab*
shared_pool_allocate_superslab_unlocked(void)
{
// Allocate SuperSlab and backing memory region.
// NOTE: Existing code likely has a helper; we keep this minimal for now.
SuperSlab* ss = (SuperSlab*)aligned_alloc(64, sizeof(SuperSlab));
if (!ss) {
return NULL;
}
memset(ss, 0, sizeof(SuperSlab));
ss->magic = SUPERSLAB_MAGIC;
ss->lg_size = SUPERSLAB_LG_DEFAULT;
ss->active_slabs = 0;
ss->slab_bitmap = 0;
// Initialize all per-slab metadata to UNASSIGNED for Phase 12 semantics.
for (int i = 0; i < SLABS_PER_SUPERSLAB_MAX; i++) {
ss->slabs[i].class_idx = 255; // UNASSIGNED
ss->slabs[i].owner_tid_low = 0;
}
// Register into pool array.
if (g_shared_pool.total_count >= g_shared_pool.capacity) {
shared_pool_ensure_capacity_unlocked(g_shared_pool.total_count + 1);
if (g_shared_pool.total_count >= g_shared_pool.capacity) {
free(ss);
return NULL;
}
}
g_shared_pool.slabs[g_shared_pool.total_count] = ss;
g_shared_pool.total_count++;
// Not counted as active until we assign at least one slab.
return ss;
}
SuperSlab*
shared_pool_acquire_superslab(void)
{
shared_pool_init();
pthread_mutex_lock(&g_shared_pool.alloc_lock);
// For now, always allocate a fresh SuperSlab and register it.
// More advanced reuse/GC comes later.
SuperSlab* ss = shared_pool_allocate_superslab_unlocked();
pthread_mutex_unlock(&g_shared_pool.alloc_lock);
return ss;
}
int
shared_pool_acquire_slab(int class_idx, SuperSlab** ss_out, int* slab_idx_out)
{
if (!ss_out || !slab_idx_out) {
return -1;
}
if (class_idx < 0 || class_idx >= TINY_NUM_CLASSES_SS) {
return -1;
}
shared_pool_init();
// Fast-path hint: read without lock (best-effort).
SuperSlab* hint = g_shared_pool.class_hints[class_idx];
if (hint) {
// Scan for a free, unassigned slab in this SuperSlab.
uint32_t bitmap = hint->slab_bitmap;
for (int i = 0; i < SLABS_PER_SUPERSLAB_MAX; i++) {
uint32_t bit = (1u << i);
if ((bitmap & bit) == 0 && hint->slabs[i].class_idx == 255) {
// Tentative claim: upgrade under lock to avoid races.
pthread_mutex_lock(&g_shared_pool.alloc_lock);
// Re-check under lock.
bitmap = hint->slab_bitmap;
if ((bitmap & bit) == 0 && hint->slabs[i].class_idx == 255) {
hint->slab_bitmap |= bit;
hint->slabs[i].class_idx = (uint8_t)class_idx;
hint->active_slabs++;
if (hint->active_slabs == 1) {
g_shared_pool.active_count++;
}
*ss_out = hint;
*slab_idx_out = i;
pthread_mutex_unlock(&g_shared_pool.alloc_lock);
return 0;
}
pthread_mutex_unlock(&g_shared_pool.alloc_lock);
break; // fall through to slow path
}
}
}
// Slow path: lock and scan all registered SuperSlabs.
pthread_mutex_lock(&g_shared_pool.alloc_lock);
for (uint32_t idx = 0; idx < g_shared_pool.total_count; idx++) {
SuperSlab* ss = g_shared_pool.slabs[idx];
if (!ss) {
continue;
}
uint32_t bitmap = ss->slab_bitmap;
for (int i = 0; i < SLABS_PER_SUPERSLAB_MAX; i++) {
uint32_t bit = (1u << i);
if ((bitmap & bit) == 0 && ss->slabs[i].class_idx == 255) {
// Assign this slab to class_idx.
ss->slab_bitmap |= bit;
ss->slabs[i].class_idx = (uint8_t)class_idx;
ss->active_slabs++;
if (ss->active_slabs == 1) {
g_shared_pool.active_count++;
}
// Update hint.
g_shared_pool.class_hints[class_idx] = ss;
*ss_out = ss;
*slab_idx_out = i;
pthread_mutex_unlock(&g_shared_pool.alloc_lock);
return 0;
}
}
}
// No existing space: allocate a new SuperSlab and take its first slab.
SuperSlab* ss = shared_pool_allocate_superslab_unlocked();
if (!ss) {
pthread_mutex_unlock(&g_shared_pool.alloc_lock);
return -1;
}
int slab_idx = 0;
ss->slab_bitmap |= (1u << slab_idx);
ss->slabs[slab_idx].class_idx = (uint8_t)class_idx;
ss->active_slabs = 1;
g_shared_pool.active_count++;
g_shared_pool.class_hints[class_idx] = ss;
*ss_out = ss;
*slab_idx_out = slab_idx;
pthread_mutex_unlock(&g_shared_pool.alloc_lock);
return 0;
}
void
shared_pool_release_slab(SuperSlab* ss, int slab_idx)
{
if (!ss) {
return;
}
if (slab_idx < 0 || slab_idx >= SLABS_PER_SUPERSLAB_MAX) {
return;
}
pthread_mutex_lock(&g_shared_pool.alloc_lock);
TinySlabMeta* meta = &ss->slabs[slab_idx];
if (meta->used != 0) {
// Not actually empty; nothing to do.
pthread_mutex_unlock(&g_shared_pool.alloc_lock);
return;
}
uint32_t bit = (1u << slab_idx);
if (ss->slab_bitmap & bit) {
ss->slab_bitmap &= ~bit;
uint8_t old_class = meta->class_idx;
meta->class_idx = 255; // UNASSIGNED
if (ss->active_slabs > 0) {
ss->active_slabs--;
if (ss->active_slabs == 0 && g_shared_pool.active_count > 0) {
g_shared_pool.active_count--;
}
}
// Invalidate class hint if it pointed here and this superslab has no free slab
// for that class anymore; for now we do a simple best-effort clear.
if (old_class < TINY_NUM_CLASSES_SS &&
g_shared_pool.class_hints[old_class] == ss) {
// We could rescan ss for another matching slab; to keep it cheap, just clear.
g_shared_pool.class_hints[old_class] = NULL;
}
}
// TODO Phase 12-4+: if ss->active_slabs == 0, consider GC / unmap.
pthread_mutex_unlock(&g_shared_pool.alloc_lock);
}