Files
hakmem/core/hakmem_super_registry.h

156 lines
6.6 KiB
C
Raw Normal View History

#pragma once
#include <stdio.h>
#include <stdlib.h>
// Phase 1: SuperSlab Registry - Thread-safe O(1) lookup for SuperSlab ownership
//
// Purpose: Replace mincore() syscall (50-100ns) with userspace hash table lookup
// Performance: ~5-10ns per lookup, 10-20x faster than mincore()
//
// Thread Safety:
// - Readers: Lock-free with acquire semantics
// - Writers: Mutex-protected with release semantics
// - Publish order: ss initialization → release fence → base write
// - Unpublish order: base = 0 (release) → munmap (prevents reader deref)
#include <stdatomic.h>
#include <pthread.h>
#include <stdint.h>
#include "hakmem_tiny_superslab.h" // For SuperSlab and SUPERSLAB_MAGIC
// Registry configuration
// Increased from 4096 to 32768 to avoid registry exhaustion under
// high-churn microbenchmarks (e.g., larson with many active SuperSlabs).
// Still a power of two for fast masking.
#define SUPER_REG_SIZE 262144 // Power of 2 for fast modulo (8x larger for workloads)
#define SUPER_REG_MASK (SUPER_REG_SIZE - 1)
#define SUPER_MAX_PROBE 8 // Linear probing limit
// Per-class registry for fast refill scan (Phase 6: Registry Optimization)
// Purpose: Avoid 262K linear scan by indexing SuperSlabs by size class
// - Each class has 16384 slots (total: 8 classes × 16384 = 128K entries)
// - Refill scan: O(class_size) instead of O(262144)
// - Expected speedup: +200-300% for Larson (2.59M → 7.8M ops/s)
#define SUPER_REG_PER_CLASS 16384 // Per-class registry capacity (increased for high-churn workloads)
// Registry entry: base address → SuperSlab pointer mapping
typedef struct {
_Atomic(uintptr_t) base; // Aligned base address (1MB or 2MB, 0 = empty slot) [atomic for proper sync]
_Atomic(SuperSlab*) ss; // Atomic SuperSlab pointer (MT-safe, prevents TOCTOU race)
uint8_t lg_size; // Phase 8.3: ACE - SuperSlab size (20=1MB, 21=2MB)
uint8_t _pad[7]; // Padding to 24 bytes (cache-friendly)
} SuperRegEntry;
// Global registry (lock-free reads, mutex-protected writes)
extern SuperRegEntry g_super_reg[SUPER_REG_SIZE];
extern pthread_mutex_t g_super_reg_lock;
extern int g_super_reg_initialized;
// Per-class registry for fast refill scan (Phase 6: Registry Optimization)
// Note: TINY_NUM_CLASSES is defined in hakmem_tiny.h (typically 8 for 16B-1KB)
// - g_super_reg_by_class[class][i] = SuperSlab pointer (NULL = empty slot)
// - g_super_reg_class_size[class] = number of active SuperSlabs for this class
// - Protected by g_super_reg_lock (shared with main registry)
#ifndef TINY_NUM_CLASSES
#define TINY_NUM_CLASSES 8 // Fallback if hakmem_tiny.h not included yet
#endif
extern SuperSlab* g_super_reg_by_class[TINY_NUM_CLASSES][SUPER_REG_PER_CLASS];
extern int g_super_reg_class_size[TINY_NUM_CLASSES];
Phase 9: SuperSlab Lazy Deallocation + mincore removal Goal: Eliminate syscall overhead (99.2% CPU) to approach System malloc performance Implementation: 1. mincore removal (100% elimination) - Deleted: hakmem_internal.h hak_is_memory_readable() syscall - Deleted: tiny_free_fast_v2.inc.h safety checks - Alternative: Internal metadata (Registry + Header magic validation) - Result: 841 mincore calls → 0 calls ✅ 2. SuperSlab Lazy Deallocation - Added LRU Cache Manager (470 lines in hakmem_super_registry.c) - Extended SuperSlab: last_used_ns, generation, lru_prev/next - Deallocation policy: Count/Memory/TTL based eviction - Environment variables: * HAKMEM_SUPERSLAB_MAX_CACHED=256 (default) * HAKMEM_SUPERSLAB_MAX_MEMORY_MB=512 (default) * HAKMEM_SUPERSLAB_TTL_SEC=60 (default) 3. Integration - superslab_allocate: Try LRU cache first before mmap - superslab_free: Push to LRU cache instead of immediate munmap - Lazy deallocation: Defer munmap until cache limits exceeded Performance Results (100K iterations, 256B allocations): Before (Phase 7-8): - Performance: 2.76M ops/s - Syscalls: 3,412 (mmap:1,250, munmap:1,321, mincore:841) After (Phase 9): - Performance: 9.71M ops/s (+251%) 🏆 - Syscalls: 1,729 (mmap:877, munmap:852, mincore:0) (-49%) Key Achievements: - ✅ mincore: 100% elimination (841 → 0) - ✅ mmap: -30% reduction (1,250 → 877) - ✅ munmap: -35% reduction (1,321 → 852) - ✅ Total syscalls: -49% reduction (3,412 → 1,729) - ✅ Performance: +251% improvement (2.76M → 9.71M ops/s) System malloc comparison: - HAKMEM: 9.71M ops/s - System malloc: 90.04M ops/s - Achievement: 10.8% (target: 93%) Next optimization: - Further mmap/munmap reduction (1,729 vs System's 13 = 133x gap) - Pre-warm LRU cache - Adaptive LRU sizing - Per-class LRU cache Production ready with recommended settings: export HAKMEM_SUPERSLAB_MAX_CACHED=256 export HAKMEM_SUPERSLAB_MAX_MEMORY_MB=512 ./bench_random_mixed_hakmem 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-13 14:05:39 +09:00
// ============================================================================
// Phase 9: Lazy Deallocation - LRU Cache Manager
// ============================================================================
// Global LRU cache for empty SuperSlabs (lazy deallocation)
typedef struct {
SuperSlab* lru_head; // LRU list head (most recently used)
SuperSlab* lru_tail; // LRU list tail (least recently used)
uint32_t total_count; // Total SuperSlabs in cache
uint32_t max_cached; // Maximum cached SuperSlabs (default: 256)
uint64_t total_memory_mb; // Total memory in cache (MB)
uint64_t max_memory_mb; // Maximum memory limit (MB, default: 512)
uint64_t ttl_ns; // Time-to-live (nanoseconds, default: 60s)
uint32_t generation; // Current generation counter
} SuperSlabLRUCache;
extern SuperSlabLRUCache g_ss_lru_cache;
// Initialize LRU cache (called once at startup)
void hak_ss_lru_init(void);
// Try to reuse a cached SuperSlab (returns NULL if cache is empty)
SuperSlab* hak_ss_lru_pop(uint8_t size_class);
// Add SuperSlab to LRU cache (returns 1 if cached, 0 if evicted immediately)
int hak_ss_lru_push(SuperSlab* ss);
// Evict old SuperSlabs based on policy (TTL, max_cached, max_memory_mb)
void hak_ss_lru_evict(void);
// Mark SuperSlab as recently used (update timestamp, move to head)
void hak_ss_lru_touch(SuperSlab* ss);
// Initialize registry (call once at startup)
void hak_super_registry_init(void);
// Hash function for aligned addresses (variable size)
static inline int hak_super_hash(uintptr_t base, int lg_size) {
// Phase 8.3: ACE - Variable size hash (lg_size = 20 for 1MB, 21 for 2MB)
return (int)((base >> lg_size) & SUPER_REG_MASK);
}
// Lookup SuperSlab by pointer (lock-free, thread-safe)
// Returns: SuperSlab* if found, NULL otherwise
// Phase 8.3: ACE - Supports both 1MB and 2MB SuperSlabs
static inline SuperSlab* hak_super_lookup(void* ptr) {
if (!g_super_reg_initialized) return NULL;
// Try both 1MB and 2MB alignments (1MB first for Step 1 default)
// ACE will use both sizes dynamically in Step 3
for (int lg = 20; lg <= 21; lg++) {
uintptr_t mask = (1UL << lg) - 1;
uintptr_t base = (uintptr_t)ptr & ~mask;
int h = hak_super_hash(base, lg);
// Linear probing with acquire semantics
for (int i = 0; i < SUPER_MAX_PROBE; i++) {
SuperRegEntry* e = &g_super_reg[(h + i) & SUPER_REG_MASK];
uintptr_t b = atomic_load_explicit(&e->base, memory_order_acquire);
// Match both base address AND lg_size
if (b == base && e->lg_size == lg) {
// Atomic load to prevent TOCTOU race with unregister
SuperSlab* ss = atomic_load_explicit(&e->ss, memory_order_acquire);
if (!ss) return NULL; // Entry cleared by unregister
// CRITICAL: Check magic BEFORE returning pointer to prevent TOCTOU
// Race scenario: lookup → free (clear magic, munmap) → caller checks magic
// Fix: Check magic HERE while we're certain ss is still registered
if (ss->magic != SUPERSLAB_MAGIC) return NULL; // Being freed
return ss;
}
if (b == 0) break; // Empty slot, try next lg_size
}
}
return NULL; // Not found
}
// Register SuperSlab (mutex-protected, called after SuperSlab initialization)
// Returns: 1 on success, 0 if registry is full
int hak_super_register(uintptr_t base, SuperSlab* ss);
// Unregister SuperSlab (mutex-protected, MUST call before munmap)
// Critical: base = 0 happens BEFORE munmap to prevent reader segfault
void hak_super_unregister(uintptr_t base);
// Debug: Get registry statistics
typedef struct {
int total_slots;
int used_slots;
int max_probe_depth;
} SuperRegStats;
void hak_super_registry_stats(SuperRegStats* stats);